

 Atria Institute of Technology
 Department of Information Science and Engineering

Bengaluru-560024

ACADEMIC YEAR: 2021-2022

ODD SEMESTER NOTES

Semester : 5th Semester

Subject Name

: Application Development Programming

using Python

Subject Code

: 18CS55

Faculty Name

: Dr. Neha Mangla

MODULE I

Chapter 1 : Python Basics

Chapter 2 : Flow Control

Chapter 3 : Functions

PYTHON BASICS

The Python programming language has a wide range of syntactical constructions,

standard library functions, and interactive development environment features.

Fortunately, you can ignore most of that; you just need to learn enough to write some

handy little programs.
/

You will, however, have to learn some basic programming concepts before you can

do anything. Like a wizard in training, you might think these concepts seem arcane and

tedious, but with some knowledge and practice, y

computer like a magic wand and perform incredible feats.

This chapter has a few examples that encourage you to type into the interactive shell,

also called the REPL (Read-Evaluate-Print Loop), which lets you run (or execute)

Python instructions one at a time and instantly shows you the results. Using the

interactive shell is great for learning what basic Python instructions do, so give it a try as

you follow along. remember the things you do much better than the things you

only read.

ENTERING EXPRESSIONS INTO THE INTERACTIVE SHELL

You can run the interactive shell by launching the Mu editor, which you should have

downloaded when going through the setup instructions in the Preface. On Windows,

open the Start

Applications folder and double-click Mu. Click the New button and save an empty file

as blank.py. When you run this blank file by clicking the Run button or pressing F5, it

will open the interactive shell, which will open as a new pane that opens at the bottom of

the Mu window. You should see a >>> prompt in the interactive shell.

Enter 2 + 2 at the prompt to have Python do some simple math. The Mu window

should now look like this:

>>> 2 + 2

4

>>>

In Python, 2 + 2 is called an expression, which is the most basic kind of programming

instruction in the language. Expressions consist of values (such as 2) and operators (such

as +), and they can always evaluate (that is, reduce) down to a single value. That means

you can use expressions anywhere in Python code that you could also use a value.

In the previous example, 2 + 2 is evaluated down to a single value, 4. A single value

with no operators is also considered an expression, though it evaluates only to itself, as

shown here:

>>> 2

2

You can use plenty of other operators in Python expressions, too. For example, Table 1-

1 lists all the math operators in Python.

Table 1-1: Math Operators from Highest to Lowest Precedence

Operator Operation Example Evaluates to . . .

** Exponent 2 ** 3 8

% Modulus/remainder 22 % 8 6

// Integer 22 // 8 2

 division/floored

quotient

/ Division 22 / 8 2.75

* Multiplication 3 * 5 15

- Subtraction 5 - 2 3

+ Addition 2 + 2 4

The order of operations (also called precedence) of Python math operators is similar

to that of mathematics. The ** operator is evaluated first; the *, /, //, and % operators are

evaluated next, from left to right; and the + and - operators are evaluated last (also from

left to right). You can use parentheses to override the usual precedence if you need to.

the indentation at the beginning of the line), but a single space is convention. Enter the

following expressions into the interactive shell:

>>> 2 + 3 * 6

20

>>> (2 + 3) * 6

30

>>> 48565878 * 578453

28093077826734

>>> 2 ** 8 /

/

256

>>> 23 / 7

3.2857142857142856

>>> 23 // 7

3

>>> 23 % 7

2

>>> 2 + 2

4

>>> (5 - 1) * ((7 + 1) / (3 - 1))

16.0

In each case, you as the programmer must enter the expression, but Python does the

hard part of evaluating it down to a single value. Python will keep evaluating parts of the

expression until it becomes a single value, as shown here:

These rules for putting operators and values together to form expressions are a

fundamental part of Python as a programming language, just like the grammar rules that

This is a grammatically correct English sentence.

This grammatically is sentence not English correct a.

derstand it

and will display a SyntaxError error message, as shown here:

>>> 5 +

File "<stdin>", line 1

5 +

^

/

SyntaxError: invalid syntax

>>> 42 + 5 + * 2

File "<stdin>", line 1

42 + 5 + * 2

^

SyntaxError: invalid syntax

You can always test to see whether an instruction works by entering it into the

is that Python responds with an error message. Professional software developers get error

messages while writing code all the time.

THE INTEGER, FLOATING-POINT, AND STRING DATA TYPES

Remember that expressions are just values combined with operators, and they always

evaluate down to a single value. A data type is a category for values, and every value

belongs to exactly one data type. The most common data types in Python are listed in

Table 1-2. The values -2 and 30, for example, are said to be integer values. The integer

(or int) data type indicates values that are whole numbers. Numbers with a decimal

point, such as 3.14, are called floating-point numbers (or floats). Note that even though

the value 42 is an integer, the value 42.0 would be a floating-point number.

Table 1-2: Common Data Types

Data type Examples

Integers -2, -1, 0, 1, 2, 3, 4, 5

Floating-point numbers -1.25, -1.0, -0.5, 0.0, 0.5, 1.0, 1.25

Strings 'a', 'aa', 'aaa', 'Hello!', '11 cats'

Python programs can also have text values called strings, or strs

Always surround your string in single quote (') characters (as in 'Hello' or 'Goodbye cruel

world!') so Python knows where the string begins and ends. You can even have a string

with no characters in it, '', called a blank string or an empty string. Strings are explained

in greater detail in Chapter 4.

If you ever see the error message SyntaxError: EOL while scanning string literal, you

probably forgot the final single quote character at the end of the string, such as in this

example:

>>> 'Hello, world!

SyntaxError: EOL while scanning string literal

/

STRING CONCATENATION AND REPLICATION

The meaning of an operator may change based on the data types of the values next to it.

For example, + is the addition operator when it operates on two integers or floating-point

values. However, when + is used on two string values, it joins the strings as the string

concatenation operator. Enter the following into the interactive shell:

>>> 'Alice' + 'Bob'

'AliceBob'

The expression evaluates down to a single, new string value that combines the text of

the two strings. However, if you try to use the + operator on a string and an integer value,

Python will not know how to handle this, and it will display an error message.

>>> 'Alice' + 42

Traceback (most recent call last):

File "<pyshell#0>", line 1, in <module>

'Alice' + 42

TypeError: can only concatenate str (not "int") to str

The error message can only concatenate str (not "int") to str means that Python thought you

were trying to concatenate an integer to the string 'Alice'. Your code will have to

explicitly convert the integer to a string because Python cannot do this automatically.

Your Progr

we talk about the str(), int(), and float() functions.)

The * operator multiplies two integer or floating-point values. But when the *

operator is used on one string value and one integer value, it becomes the string

replication operator. Enter a string multiplied by a number into the interactive shell to

see this in action.

>>> 'Alice' * 5

'AliceAliceAliceAliceAlice'

The expression evaluates down to a single string value that repeats the original string

a number of times equal to the integer value. String replication is a useful trick, but

not used as often as string concatenation.

The * operator can be used with only two numeric values (for multiplication), or one

string value and one integer value (for string replication). Otherwise, Python will just

display an error message, like the following:

/

>>> 'Alice' * 'Bob'

Traceback (most recent call last):

File "<pyshell#32>", line 1, in <module>

'Alice' * 'Bob'

TypeError: can't multiply sequence by non-int of type 'str'

>>> 'Alice' * 5.0

Traceback (most recent call last):

File "<pyshell#33>", line 1, in <module>

'Alice' * 5.0

TypeError: can't multiply sequence by non-int of type 'float'

STORING VALUES IN VARIABLES

A variable

you want to use the result of an evaluated expression later in your program, you can save

it inside a variable.

Assignment Statements

assignment statement. An assignment statement

consists of a variable name, an equal sign (called the assignment operator), and the value

to be stored. If you enter the assignment statement spam = 42, then a variable named spam

will have the integer value 42 stored in it.

Think of a variable as a labeled box that a value is placed in, as in Figure 1-1.

Figure 1-1: spam = 42 spam now has the integer value 42

/

For example, enter the following into the interactive shell:

>>> spam = 40

>>> spam

40

>>> eggs = 2

>>> spam + eggs

42

>>> spam + eggs + spam

82

>>> spam = spam + 2

>>> spam

42

A variable is initialized (or created) the first time a value is stored in it . After that,

you can use it in expressions with other variables and values . When a variable is

assigned a new value , the old value is forgotten, which is why spam evaluated to 42

instead of 40 at the end of the example. This is called overwriting the variable. Enter the

following code into the interactive shell to try overwriting a string:

>>> spam = 'Hello'

>>> spam

'Hello'

>>> spam = 'Goodbye'

>>> spam

'Goodbye'

Just like the box in Figure 1-2, the spam variable in this example stores 'Hello' until you

replace the string with 'Goodbye'.

/

Figure 1-2: When a new value is assigned to a variable, the old one is forgotten.

Variable Names

A good variable name describes the data it contains. Imagine that you moved to a new

house and labeled all of your moving boxes as Stuff. never find anything! Most of

this spam,

eggs, and bacon

programs, a descriptive name will help make your code more readable.

Though you can name your variables almost anything, Python does have some

naming restrictions. Table 1-3 has examples of legal variable names. You can name a

variable anything as long as it obeys the following three rules:

It can be only one word with no spaces.

It can use only letters, numbers, and the underscore (_) character.

number.

Table 1-3: Valid and Invalid Variable Names

Valid variable names Invalid variable names

current_balance current-balance (hyphens are not allowed)

currentBalance current balance (spaces are not allowed)

account4 4account number)

/

Valid variable names Invalid variable names

_42 42 number)

TOTAL_SUM TOTAL_$UM (special characters like $ are

not allowed)

hello 'hello' (special characters like ' are not

allowed)

Variable names are case-sensitive, meaning that spam, SPAM, Spam, and sPaM are four

different variables. Though Spam is a valid variable you can use in a program, it is a

Python convention to start your variables with a lowercase letter.

This book uses camelcase for variable names instead of underscores; that is, variables

lookLikeThis instead of looking_like_this. Some experienced programmers may point out that

the official Python code style, PEP 8, says that underscores should be used. I

Consistency with the style guide is important. But most importantly: know

when to be inconsistent apply. When

in doubt, use your best judgment.

YOUR FIRST PROGRAM

While the interactive shell is good for running Python instructions one at a time, to write

file editor is

similar to text editors such as Notepad or TextMate, but it has some features specifically

for entering source code. To open a new file in Mu, click the New button on the top row.

The window that appears should contain a cursor awaiting your input, but

different from the interactive shell, which runs Python instructions as soon as you press

ENTER. The file editor lets you type in many instructions, save the file, and run the

program. how you can tell the difference between the two:

The interactive shell window will always be the one with the >>> prompt.

The file editor window will not have the >>> prompt.

the following into it:

This program says hello and asks for my name.

/

print('Hello, world!')

print('What is your name?') # ask for their name

myName = input()

print('It is good to meet you, ' + myName)

print('The length of your name is:')

print(len(myName))

print('What is your age?') # ask for their age

myAge = input()

print('You will be ' + str(int(myAge) + 1) + ' in a year.')

each time you start Mu. Click the Save button, enter hello.py in the File Name field, and

then click Save.

You should save your programs every once in a while as you type them. That way, if

shortcut, you can press CTRL-S on Windows and Linux or -S on macOS to save your

file.

run our program. Press the F5 key. Your program should run

in the interactive shell window. Remember, you have to press F5 from the file editor

window, not the interactive shell window. Enter your name when your program asks for

this:

Python 3.7.0b4 (v3.7.0b4:eb96c37699, May 2 2018, 19:02:22) [MSC v.1913 64 bit

(AMD64)] on win32

Type "copyright", "credits" or "license()" for more information.

>>> ================================ RESTART

================================

>>>

Hello, world!

What is your name?

Al

It is good to meet you, Al

The length of your name is:

2

What is your age?

4

You will be 5 in a year.

>>>

/

When there are no more lines of code to execute, the Python program terminates; that

is, it stops running. (You can also say that the Python program exits.)

You can close the file editor by clicking the X at the top of the window. To reload a

saved program, select File Open... from the menu. Do that now, and in the window that

appears, choose hello.py and click the Open button. Your previously saved hello.py

program should open in the file editor window.

You can view the execution of a program using the Python Tutor visualization tool at

http://pythontutor.com/. You can see the execution of this particular program at

https://autbor.com/hellopy/. Click the forward button to move through each step of the

change.

DISSECTING YOUR PROGRAM

instructions it uses by looking at what each line of code does.

Comments

The following line is called a comment.

This program says hello and asks for my name.

Python ignores comments, and you can use them to write notes or remind yourself

what the code is trying to do. Any text for the rest of the line following a hash mark (#) is

part of a comment.

Sometimes, programmers will put a # in front of a line of code to temporarily remove

it while testing a program. This is called commenting out code, and it can be useful when

You can remove the # later

when you are ready to put the line back in.

Python also ignores the blank line after the comment. You can add as many blank

lines to your program as you want. This can make your code easier to read, like

paragraphs in a book.

The print() Function

The print() function displays the string value inside its parentheses on the screen.

print('Hello, world!')

print('What is your name?') # ask for their name

http://pythontutor.com/

/

NOTE

You can also use this function to put a blank line on the screen; just call print() with

nothing in between the parentheses.

The line print('Hello, world!') 'Hello, world!'

Python executes this line, you say that Python is calling the print() function and the string

value is being passed to the function. A value that is passed to a function call is an

argument. Notice that the quotes are not printed to the screen. They just mark where the

string begins and ends; they are not part of the string value.

When you write a function name, the opening and closing parentheses at the end

print() rather than

print. Chapter 3 describes functions in more detail.

The input() Function

The input() function waits for the user to type some text on the keyboard and press ENTER.

myName = input()

assigns the myName variable to this string value.

You can think of the input() function call as an expression that evaluates to whatever

string the user typed in. If the user entered 'Al', then the expression would evaluate to

myName = 'Al'.

If you call input() and see an error message, like NameError: name 'Al' is not defined, the

3.

Printing the U

The following call to print() actually contains the expression 'It is good to meet you, ' +

myName between the parentheses.

print('It is good to meet you, ' + myName)

Remember that expressions can always evaluate to a single value. If 'Al' is the value

stored in myName on line , then this expression evaluates to 'It is good to meet you, Al'. This

single string value is then passed to print(), which prints it on the screen.

The len() Function

/

You can pass the len() function a string value (or a variable containing a string), and the

function evaluates to the integer value of the number of characters in that string.

print('The length of your name is:')

print(len(myName))

Enter the following into the interactive shell to try this:

>>> len('hello')

5

>>> len('My very energetic monster just scarfed nachos.')

46

>>> len('')

0

Just like those examples, len(myName) evaluates to an integer. It is then passed to print()

to be displayed on the screen. The print() function allows you to pass it either integer

values or string values, but notice the error that shows up when you type the following

into the interactive shell:

>>> print('I am ' + 29 + ' years old.')

Traceback (most recent call last):

File "<pyshell#6>", line 1, in <module>

print('I am ' + 29 + ' years old.')

TypeError: can only concatenate str (not "int") to str

The print() the expression you tried to

pass to print(). You get the same error message if you type the expression into the

interactive shell on its own.

>>> 'I am ' + 29 + ' years old.'

Traceback (most recent call last):

File "<pyshell#7>", line 1, in <module>

'I am ' + 29 + ' years old.'

TypeError: can only concatenate str (not "int") to str

Python gives an error because the + operator can only be used to add two integers

together or concatenate two strings. You

ungrammatical in Python. You can fix this by using a string version of the integer

instead, as explained in the next section.

/

The str(), int(), and float() Functions

If you want to concatenate an integer such as 29 with a string to pass to print()

to get the value '29', which is the string form of 29. The str() function can be passed an

integer value and will evaluate to a string value version of the integer, as follows:

>>> str(29)

'29'

>>> print('I am ' + str(29) + ' years old.')

I am 29 years old.

Because str(29) evaluates to '29', the expression 'I am ' + str(29) + ' years old.' evaluates to 'I

am ' + '29' + ' years old.', which in turn evaluates to 'I am 29 years old.'. This is the value that is

passed to the print() function.

The str(), int(), and float() functions will evaluate to the string, integer, and floating-

point forms of the value you pass, respectively. Try converting some values in the

interactive shell with these functions and watch what happens.

>>> str(0)

'0'

>>> str(-3.14)

'-3.14'

>>> int('42')

42

>>> int('-99')

-99

>>> int(1.25)

1

>>> int(1.99)

1

>>> float('3.14')

3.14

>>> float(10)

10.0

The previous examples call the str(), int(), and float() functions and pass them values of

the other data types to obtain a string, integer, or floating-point form of those values.

The str() function is handy when you have an integer or float that you want to

concatenate to a string. The int() function is also helpful if you have a number as a string

value that you want to use in some mathematics. For example, the input() function always

/

returns a string, even if the user enters a number. Enter spam = input() into the interactive

shell and enter 101 when it waits for your text.

>>> spam = input()

101

>>> spam

'101'

The value stored inside spam 101 but the string '101'. If you want to do

math using the value in spam, use the int() function to get the integer form of spam and

then store this as the new value in spam.

>>> spam = int(spam)

>>> spam

101

Now you should be able to treat the spam variable as an integer instead of a string.

>>> spam * 10 / 5

202.0

Note that if you pass a value to int() that it cannot evaluate as an integer, Python will

display an error message.

>>> int('99.99')

Traceback (most recent call last):

File "<pyshell#18>", line 1, in <module>

int('99.99')

ValueError: invalid literal for int() with base 10: '99.99'

>>> int('twelve')

Traceback (most recent call last):

File "<pyshell#19>", line 1, in <module>

int('twelve')

ValueError: invalid literal for int() with base 10: 'twelve'

The int() function is also useful if you need to round a floating-point number down.

>>> int(7.7)

7

>>> int(7.7) + 1

8

/

You used the int() and str() functions in the last three lines of your program to get a

value of the appropriate data type for the code.

print('What is your age?') # ask for their age

myAge = input()

print('You will be ' + str(int(myAge) + 1) + ' in a year.')

TEXT AND NUMBER EQUIVALENCE

Although the string value of a number is considered a completely different value from the integer or

floating-point version, an integer can be equal to a floating point.

>>> 42 == '42'

False

>>> 42 == 42.0

True

>>> 42.0 == 0042.000

True

Python makes this distinction because strings are text, while integers and floats are both numbers.

The myAge variable contains the value returned from input(). Because the input()

function always returns a string (even if the user typed in a number), you can use the

int(myAge) code to return an integer value of the string in myAge. This integer value is then

added to 1 in the expression int(myAge) + 1.

The result of this addition is passed to the str() function: str(int(myAge) + 1). The string

value returned is then concatenated with the strings 'You will be ' and ' in a year.' to evaluate

to one large string value. This large string is finally passed to print() to be displayed on

the screen.

say the user enters the string '4' for myAge. The string '4' is converted to an

integer, so you can add one to it. The result is 5. The str() function converts the result

back to a string, so you can concatenate it with the second string, 'in a year.', to create the

final message. These evaluation steps would look something like the following:

/

SUMMARY

You can compute expressions with a calculator or enter string concatenations with a

word processor. You can even do string replication easily by copying and pasting text.

But expressions, and their component values operators, variables, and function calls

are the basic building blocks that make programs. Once you know how to handle these

elements, you will be able to instruct Python to operate on large amounts of data for you.

It is good to remember the different types of operators (+, -, *, /, //, %, and ** for math

operations, and + and * for string operations) and the three data types (integers, floating-

point numbers, and strings) introduced in this chapter.

I introduced a few different functions as well. The print() and input() functions handle

simple text output (to the screen) and input (from the keyboard). The len() function takes

a string and evaluates to an int of the number of characters in the string. The str(), int(),

and float() functions will evaluate to the string, integer, or floating-point number form of

the value they are passed.

what code to run, what code to skip, and what code to repeat based on the values it has.

This is known as flow control, and it allows you to write programs that make intelligent

decisions.

PRACTICE QUESTIONS

1. Which of the following are operators, and which are values?

*

'hello'

-88.8

-

/

+

5

2. Which of the following is a variable, and which is a string?

spam

'spam'

3. Name three data types.

4. What is an expression made up of? What do all expressions do?

5. This chapter introduced assignment statements, like spam = 10. What is the difference

between an expression and a statement?

6. What does the variable bacon contain after the following code runs?

bacon = 20

bacon + 1

7. What should the following two expressions evaluate to?

'spam' + 'spamspam'

'spam' * 3

8. Why is eggs a valid variable name while 100 is invalid?

9. What three functions can be used to get the integer, floating-point number, or string

version of a value?

10. Why does this expression cause an error? How can you fix it?

'I have eaten ' + 99 + ' burritos.'

Extra credit: Search online for the Python documentation for the len() function. It

-

Python has, look up what the round() function does, and experiment with it in the

interactive shell.

/

FLOW CONTROL

So, you know the basics of individual instructions and that a program is just a series of

another like a weekend errand list. Based on how expressions evaluate, a program can

decide to skip instructions, repeat them, or choose one of several instructions to run. In

fact, you almost never want your programs to start from the first line of code and simply

execute every line, straight to the end. Flow control statements can decide which Python

instructions to execute under which conditions.

These flow control statements directly correspond to the symbols in a flowchart, so

Figure 2-1 shows a

flowchart for what to do if raining. Follow the path made by the arrows from Start to

End.

Figure 2-1: A flowchart to tell you what to do if it is raining

In a flowchart, there is usually more than one way to go from the start to the end. The

same is true for lines of code in a computer program. Flowcharts represent these

branching points with diamonds, while the other steps are represented with rectangles.

The starting and ending steps are represented with rounded rectangles.

/

But before you learn about flow control statements, you first need to learn how to

represent those yes and no options, and you need to understand how to write those

operators, and Boolean operators.

BOOLEAN VALUES

While the integer, floating-point, and string data types have an unlimited number of

possible values, the Boolean data type has only two values: True and False. (Boolean is

capitalized because the data type is named after mathematician George Boole.) When

entered as Python code, the Boolean values True and False lack the quotes you place

around strings, and they always start with a capital T or F, with the rest of the word in

lowercase. Enter the following into the interactive shell. (Some of these instructions are

appear.)

>>> spam = True

>>> spam

True

>>> true

Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>

true

NameError: name 'true' is not defined

>>> True = 2 + 2

SyntaxError: can't assign to keyword

Like any other value, Boolean values are used in expressions and can be stored in

variables or you try to use True and False for

variable names , Python will give you an error message.

COMPARISON OPERATORS

Comparison operators, also called relational operators, compare two values and

evaluate down to a single Boolean value. Table 2-1 lists the comparison operators.

/

Table 2-1: Comparison Operators

Operator Meaning

== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

These operators evaluate to True or False depending on the values you give them.

try some operators now, starting with == and !=.

>>> 42 == 42

True

>>> 42 == 99

False

>>> 2 != 3

True

>>> 2 != 2

False

As you might expect, == (equal to) evaluates to True when the values on both sides are

the same, and != (not equal to) evaluates to True when the two values are different. The ==

and != operators can actually work with values of any data type.

>>> 'hello' == 'hello'

True

>>> 'hello' == 'Hello'

False

>>> 'dog' != 'cat'

True

>>> True == True

True

>>> True != False

True

>>> 42 == 42.0

/

True

>>> 42 == '42'

False

Note that an integer or floating-point value will always be unequal to a string value.

The expression 42 == '42' evaluates to False because Python considers the integer 42 to

be different from the string '42'.

The <, >, <=, and >= operators, on the other hand, work properly only with integer and

floating-point values.

>>> 42 < 100

True

>>> 42 > 100

False

>>> 42 < 42

False

>>> eggCount = 42

>>> eggCount <= 42

True

>>> myAge = 29

>>> myAge >= 10

True

THE DIFFERENCE BETWEEN THE == AND = OPERATORS

You might have noticed that the == operator (equal to) has two equal signs, while the = operator

remember these points:

The == operator (equal to) asks whether two values are the same as each other.

The = operator (assignment) puts the value on the right into the variable on the

left.

To help remember which is which, notice that the == operator (equal to) consists of two

characters, just like the != operator (not equal to) consists of two characters.

/

value, like in the eggCount <= 42 and myAge >= 10 examples. (After all, instead of

entering 'dog' != 'cat' in your code, you could have just entered True

examples of this later when you learn about flow control statements.

BOOLEAN OPERATORS

The three Boolean operators (and, or, and not) are used to compare Boolean values. Like

explore these operators in detail, starting with the and operator.

Binary Boolean Operators

The and and or

considered binary operators. The and operator evaluates an expression to True if both

Boolean values are True; otherwise, it evaluates to False. Enter some expressions using and

into the interactive shell to see it in action.

>>> True and True

True

>>> True and False

False

A truth table shows every possible result of a Boolean operator. Table 2-2 is the truth

table for the and operator.

Table 2-2: The and

Expression Evaluates to . . .

True and True True

True and False False

False and True False

False and False False

On the other hand, the or operator evaluates an expression to True if either of the two

Boolean values is True. If both are False, it evaluates to False.

/

/

>>> False or True

True

>>> False or False

False

You can see every possible outcome of the or operator in its truth table, shown in

Table 2-3.

Table 2-3: The or Truth Table

Expression Evaluates to . . .

True or True True

True or False True

False or True True

False or False False

The not Operator

Unlike and and or, the not operator operates on only one Boolean value (or expression).

This makes it a unary operator. The not operator simply evaluates to the opposite

Boolean value.

>>> not True

False

>>> not not not not True

True

Much like using double negatives in speech and writing, you can nest not operators ,

-4 shows the truth

table for not.

Table 2-4: The not

Expression Evaluates to . . .

not True False

not False True

MIXING BOOLEAN AND COMPARISON OPERATORS

Since the comparison operators evaluate to Boolean values, you can use them in

expressions with the Boolean operators.

Recall that the and, or, and not operators are called Boolean operators because they

always operate on the Boolean values True and False. While expressions like 4 < 5

Boolean values, they are expressions that evaluate down to Boolean values. Try entering

some Boolean expressions that use comparison operators into the interactive shell.

>>> (4 < 5) and (5 < 6)

True

>>> (4 < 5) and (9 < 6)

False

>>> (1 == 2) or (2 == 2)

True

The computer will evaluate the left expression first, and then it will evaluate the right

expression. When it knows the Boolean value for each, it will then evaluate the whole

expression down to one Boolean value. You

process for (4 < 5) and (5 < 6) as the following:

You can also use multiple Boolean operators in an expression, along with the

comparison operators:

>>> 2 + 2 == 4 and not 2 + 2 == 5 and 2 * 2 == 2 + 2

True

The Boolean operators have an order of operations just like the math operators do.

After any math and comparison operators evaluate, Python evaluates the not operators

first, then the and operators, and then the or operators.

/

ELEMENTS OF FLOW CONTROL

Flow control statements often start with a part called the condition and are always

followed by a block of code called the clause

are.

Conditions

Th which

are the same thing as expressions; condition is just a more specific name in the context

of flow control statements. Conditions always evaluate down to a Boolean value, True or

False. A flow control statement decides what to do based on whether its condition is True

or False, and almost every flow control statement uses a condition.

Blocks of Code

Lines of Python code can be grouped together in blocks. You can tell when a block

begins and ends from the indentation of the lines of code. There are three rules for

blocks.

Blocks begin when the indentation increases.

Blocks can contain other blocks.

Blocks end when the indentation decreases to zero or to a

indentation.

blocks in part of a small game program, shown here:

name = 'Mary'

password = 'swordfish'

if name == 'Mary':

print('Hello, Mary')

if password == 'swordfish':

print('Access granted.')

else:

print('Wrong password.')

You can view the execution of this program at https://autbor.com/blocks/. The first

block of code starts at the line print('Hello, Mary') and contains all the lines after it.

Inside this block is another block , which has only a single line in it: print('Access

Granted.'). The third block is also one line long: print('Wrong password.').

/

PROGRAM EXECUTION

hello.py program, Python started executing instructions at the

top of the program going down, one after another. The program execution (or simply,

execution) is a term for the current instruction being executed. If you print the source

code on paper and put your finger on each line as it is executed, you can think of your

finger as the program execution.

Not all programs execute by simply going straight down, however. If you use your

finger to trace through a program with flow c find

skip

entire clauses.

FLOW CONTROL STATEMENTS

Now, explore the most important piece of flow control: the statements themselves.

The statements represent the diamonds you saw in the flowchart in Figure 2-1, and they

are the actual decisions your programs will make.

if Statements

The most common type of flow control statement is the if statement. An if

clause (that is, the block following the if statement) will execute if the

condition is True. The clause is skipped if the condition is False.

In plain English, an if

if statement consists of the following:

The if keyword

A condition (that is, an expression that evaluates to True or False)

A colon

Starting on the next line, an indented block of code (called the if clause)

For example,

name is Alice. (Pretend name was assigned some value earlier.)

if name == 'Alice':

print('Hi, Alice.')

All flow control statements end with a colon and are followed by a new block of code

(the clause). This if print('Hi, Alice.'). Figure 2-2 shows

what a flowchart of this code would look like.

/

Figure 2-2: The flowchart for an if statement

else Statements

An if clause can optionally be followed by an else statement. The else clause is executed

only when the if False. In plain English, an else statement could be

else

else statement always consists of the

following:

The else keyword

A colon

Starting on the next line, an indented block of code (called the else clause)

else statement to

if name == 'Alice':

print('Hi, Alice.')

else:

print('Hello, stranger.')

/

/

Figure 2-3 shows what a flowchart of this code would look like.

Figure 2-3: The flowchart for an else statement

elif Statements

While only one of the if or else clauses will execute, you may have a case where you want

one of many possible clauses to execute. The elif that

always follows an if or another elif statement. It provides another condition that is

checked only if all of the previous conditions were False. In code, an elif statement always

consists of the following:

The elif keyword

A condition (that is, an expression that evaluates to True or False)

A colon

Starting on the next line, an indented block of code (called the elif clause)

/

add an elif to the name checker to see this statement in action.

if name == 'Alice':

print('Hi, Alice.')

elif age < 12:

print('You are not Alice, kiddo.')

This

-4.

Figure 2-4: The flowchart for an elif statement

The elif clause executes if age < 12 is True and name == 'Alice' is False. However, if both

of the conditions are False, then both of the clauses are skipped. It is not guaranteed that

at least one of the clauses will be executed. When there is a chain of elif statements, only

found to be True, the rest of the elif clauses are automatically skipped. For example, open

a new file editor window and enter the following code, saving it as vampire.py:

name = 'Carol'

age = 3000

if name == 'Alice':

print('Hi, Alice.')

elif age < 12:

print('You are not Alice, kiddo.')

elif age > 2000:

print('Unlike you, Alice is not an undead, immortal vampire.')

elif age > 100:

print('You are not Alice, grannie.')

You can view the execution of this program at https://autbor.com/vampire/

added two more elif statements to make the name checker greet a person with different

answers based on age. Figure 2-5 shows the flowchart for this.

/

Figure 2-5: The flowchart for multiple elif statements in the vampire.py program

The order of the elif statements does matter, however. rearrange them to

introduce a bug. Remember that the rest of the elif clauses are automatically skipped once

a True condition has been found, so if you swap around some of the clauses in

vampire.py, you run into a problem. Change the code to look like the following, and save

it as vampire2.py:

name = 'Carol'

age = 3000

if name == 'Alice':

print('Hi, Alice.')

elif age < 12:

print('You are not Alice, kiddo.')

elif age > 100:

print('You are not Alice, grannie.')

elif age > 2000:

print('Unlike you, Alice is not an undead, immortal vampire.')

You can view the execution of this program at https://autbor.com/vampire2/. Say the

age variable contains the value 3000 before this code is executed. You might expect the

code to print the string 'Unlike you, Alice is not an undead, immortal vampire.'. However, because

the age > 100 condition is True (after all, 3,000 is greater than 100) , the string 'You are not

Alice, grannie.' is printed, and the rest of the elif statements are automatically skipped.

Remember that at most only one of the clauses will be executed, and for elif statements,

the order matters!

Figure 2-6 shows the flowchart for the previous code. Notice how the diamonds for

age > 100 and age > 2000 are swapped.

Optionally, you can have an else statement after the last elif statement. In that case, it

is guaranteed that at least one (and only one) of the clauses will be executed. If the

conditions in every if and elif statement are False, then the else clause is executed. For

example, re-create the Alice program to use if, elif, and else clauses.

name = 'Carol'

age = 3000

if name == 'Alice':

print('Hi, Alice.')

elif age < 12:

print('You are not Alice, kiddo.')

else:

print('You are neither Alice nor a little kid.')

/

You can view the execution of this program at https://autbor.com/littlekid/. Figure 2-7

littleKid.py.

In plain English, this type of flow cont is

true, do this. Else, if the second condition is true, do that. Otherwise, do something

When you use if, elif, and else statements together, remember these rules about how to

order them to avoid bugs like the one in Figure 2-6. First, there is always exactly one if

statement. Any elif statements you need should follow the if statement. Second, if you

want to be sure that at least one clause is executed, close the structure with an else

statement.

True

False

True

False

True

Fa lse

I

Fa lse

End

print(' Hi, Alice.')

print('Unlike you, Al·ce is no
an undead, immoral vampire.')

priflt{'Vou are not Alice, grannie.')

print('Vou are not Alice, kiddo.')

Start

Figure 2-6: The flowchart for the vampire2.py program. The X path will logically never happen, because if

age were greater than 2000, it would have already been greater than 100.

/

Figure 2-7: Flowchart for the previous littleKid.py program

while Loop Statements

You can make a block of code execute over and over again using a while statement. The

code in a while clause will be executed as long as the while True.

In code, a while statement always consists of the following:

The while keyword

A condition (that is, an expression that evaluates to True or False)

A colon

Starting on the next line, an indented block of code (called the while clause)

/

You can see that a while statement looks similar to an if statement. The difference is in

how they behave. At the end of an if clause, the program execution continues after the if

statement. But at the end of a while clause, the program execution jumps back to the start

of the while statement. The while clause is often called the while loop or just the loop.

if statement and a while loop that use the same condition and take the

same actions based on that condition. Here is the code with an if statement:

spam = 0

if spam < 5:

print('Hello, world.')

spam = spam + 1

Here is the code with a while statement:

spam = 0

while spam < 5:

print('Hello, world.')

spam = spam + 1

These statements are similar both if and while check the value of spam, and if less

than 5, they print a message. But when you run these two code snippets, something very

different happens for each one. For the if statement, the output is simply "Hello, world.".

But for the while statement, "Hello, world." repeated five times! Take a look at the

flowcharts for these two pieces of code, Figures 2-8 and 2-9, to see why this happens.

Figure 2-8: The flowchart for the if statement code

Figure 2-9: The flowchart for the while statement code

The code with the if statement checks the condition, and it prints Hello, world. only

once if that condition is true. The code with the while loop, on the other hand, will print it

five times. The loop stops after five prints because the integer in spam increases by one at

the end of each loop iteration, which means that the loop will execute five times before

spam < 5 is False.

In the while loop, the condition is always checked at the start of each iteration (that is,

each time the loop is executed). If the condition is True, then the clause is executed, and

afterward, the condition is checked again. The first time the condition is found to be

False, the while clause is skipped.

An Annoying while Loop

a small example program that will keep asking you to type, literally, your name.

Select File New to open a new file editor window, enter the following code, and save

the file as yourName.py:

name = ''

while name != 'your name':

print('Please type your name.')

name = input()

print('Thank you!')

You can view the execution of this program at https://autbor.com/yourname/. First,

the program sets the name variable to an empty string. This is so that the name != 'your

name' condition will evaluate to True and the program execution will enter the while

clause .

/

/

The code inside this clause asks the user to type their name, which is assigned to the

name variable . Since this is the last line of the block, the execution moves back to the

start of the while loop and reevaluates the condition. If the value in name is not equal to

the string 'your name', then the condition is True, and the execution enters the while clause

again.

But once the user types your name, the condition of the while loop will be 'your name' !=

'your name', which evaluates to False. The condition is now False, and instead of the

program execution reentering the while clause, Python skips past it and continues

running the rest of the program . Figure 2-10 shows a flowchart for the yourName.py

program.

Figure 2-10: A flowchart of the yourName.py program

Now, see yourName.py in action. Press F5 to run it, and enter something other

than your name a few times before you give the program what it wants.

Please type your name.

Al

Please type your name.

Albert

Please type your name.

%#@#%*(^&!!!

Please type your name.

your name

Thank you!

/

If you never enter your name, then the while condition will never be False, and the

program will just keep asking forever. Here, the input() call lets the user enter the right

string to make the program move on. In other programs, the condition might never

actually change, and that can be a problem. look at how you can break out of a

while loop.

break Statements

There is a shortcut to getting the program execution to break out of a while clause

early. If the execution reaches a break statement, it immediately exits the while

clause. In code, a break statement simply contains the break keyword.

Pretty simple, right? a program that does the same thing as the previous

program, but it uses a break statement to escape the loop. Enter the following code, and

save the file as yourName2.py:

while True:

print('Please type your name.')

name = input()

if name == 'your name':

break

print('Thank you!')

You can view the execution of this program at https://autbor.com/yourname2/. The

first line creates an infinite loop; it is a while loop whose condition is always True. (The

expression True, after all, always evaluates down to the value True.) After the program

execution enters this loop, it will exit the loop only when a break statement is executed.

(An infinite loop that never exits is a common programming bug.)

Just like before, this program asks the user to enter your name . Now, however, while

the execution is still inside the while loop, an if statement checks whether name is equal

to 'your name'. If this condition is True, the break statement is run , and the execution

moves out of the loop to print('Thank you!') . Otherwise, the if

contains the break statement is skipped, which puts the execution at the end of the while

loop. At this point, the program execution jumps back to the start of the while statement

to recheck the condition. Since this condition is merely the True Boolean value, the

execution enters the loop to ask the user to type your name again. See Figure 2-11 for this

/

Run yourName2.py, and enter the same text you entered for yourName.py. The

rewritten program should respond in the same way as the original.

Figure 2-11: The flowchart for the yourName2.py program with an infinite loop. Note that the X path will

logically never happen, because the loop condition is always True.

continue Statements

Like break statements, continue statements are used inside loops. When the program

execution reaches a continue statement, the program execution immediately jumps back to

the start of the loop and reevaluates the condition. (This is also what happens

when the execution reaches the end of the loop.)

continue to write a program that asks for a name and password. Enter the

following code into a new file editor window and save the program as swordfish.py.

/

TRAPPED IN AN INFINITE LOOP?

If you ever run a program that has a bug causing it to get stuck in an infinite loop, press CTRL-C or

select Shell Restart Shell from menu. This will send a KeyboardInterrupt error to your

program and cause it to stop immediately. Try stopping a program by creating a simple infinite loop

in the file editor, and save the program as infiniteLoop.py.

while True:

print('Hello, world!')

When you run this program, it will print Hello, world! to the screen forever because the while

True. CTRL-C is also handy if you want to simply terminate your

while True:

print('Who are you?')

name = input()

if name != 'Joe':

continue

print('Hello, Joe. What is the password? (It is a fish.)')

password = input()

if password == 'swordfish':

break

print('Access granted.')

If the user enters any name besides Joe , the continue statement causes the program

execution to jump back to the start of the loop. When the program reevaluates the

condition, the execution will always enter the loop, since the condition is simply the

value True.

Once the user makes it past that if statement, they are asked for a password . If the

password entered is swordfish, then the break statement is run, and the execution jumps

out of the while loop to print Access granted . Otherwise, the execution continues

to the end of the while loop, where it then jumps back to the start of the loop. See Figure 2-

Figure 2-12: A flowchart for swordfish.py. The X path will logically never happen, because the loop

condition is always True.

VALUES

Conditions will consider some values in other data types equivalent to True and False. When used in

conditions, 0, 0.0, and '' (the empty string) are considered False, while all other values are considered

True. For example, look at the following program:

name = ''

while not name:

print('Enter your name:')

name = input()

print('How many guests will you have?')

numOfGuests = int(input())

if numOfGuests:

print('Be sure to have enough room for all your guests.')

print('Done')

You can view the execution of this program at https://autbor.com/howmanyguests/. If the user

enters a blank string for name, then the while True , and the program

continues to ask for a name. If the value for numOfGuests is not 0 , then the condition is considered

to be True, and the program will print a reminder for the user .

You could have entered not name != '' instead of not name, and numOfGuests != 0 instead of

numOfGuests, but using the truthy and falsey values can make your code easier to read.

Run this program and give it some input. Until you claim to be Joe, the program

Who are you?

I'm fine, thanks. Who are you?

Who are you?

/

Joe

Hello, Joe. What is the password? (It is a fish.)

Mary

Who are you?

Joe

Hello, Joe. What is the password? (It is a fish.)

swordfish

Access granted.

You can view the execution of this program at https://autbor.com/hellojoe/.

for Loops and the range() Function
The while loop keeps looping while its condition is True (which is the reason for its

name), but what if you want to execute a block of code only a certain number of times?

You can do this with a for loop statement and the range() function.

In code, a for statement looks something like for i in range(5): and includes the

following:

The for keyword

A variable name

The in keyword

A call to the range() method with up to three integers passed to it

A colon

Starting on the next line, an indented block of code (called the for clause)

program called fiveTimes.py to help you see a for loop in action.

print('My name is')

for i in range(5):

print('Jimmy Five Times (' + str(i) + ')')

You can view the execution of this program at https://autbor.com/fivetimesfor/. The

code in the for clause is run five times. The first time it is run, the variable i is set

to 0. The print() call in the clause will print Jimmy Five Times (0). After Python finishes an

iteration through all the code inside the for clause, the execution goes back to the

top of the loop, and the for statement increments i by one.

This is why range(5) results in five iterations through the clause, with i being set to 0,

then 1, then 2, then 3, and then 4. The variable i will go up to, but will not include, the

integer passed to range(). Figure 2-13 shows a flowchart for the fiveTimes.py program.

When you run this program, it should print Jimmy Five Times followed by the value of i

five times before leaving the for loop.

My name is

Jimmy Five Times (0)

Jimmy Five Times (1)

Jimmy Five Times (2)

Jimmy Five Times (3)

Jimmy Five Times (4)

/

Figure 2-13: The flowchart for fiveTimes.py

NOTE

You can use break and continue statements inside for loops as well. The continue

statement will continue to the next value of the for counter, as if the program

execution had reached the end of the loop and returned to the start. In fact, you can

use continue and break statements only inside while and for loops. If you try to use these

statements elsewhere, Python will give you an error.

/

As another for loop example, consider this story about the mathematician Carl

Friedrich Gauss. When Gauss was a boy, a teacher wanted to give the class some

busywork. The teacher told them to add up all the numbers from 0 to 100. Young Gauss

came up with a clever trick to figure out the answer in a few seconds, but you can write a

Python program with a for loop to do this calculation for you.

total = 0

for num in range(101):

total = total + num

print(total)

The result should be 5,050. When the program first starts, the total variable is set to 0

. The for loop then executes total = total + num 100 times. By the time the loop has

finished all of its 100 iterations, every integer from 0 to 100 will have been added to total.

At this point, total is printed to the screen . Even on the slowest computers, this

program takes less than a second to complete.

(Young Gauss figured out a way to solve the problem in seconds. There are 50 pairs

of numbers that add up to 101: 1 + 100, 2 + 99, 3 + 98, and so on, until 50 + 51. Since 50

× 101 is 5,050, the sum of all the numbers from 0 to 100 is 5,050. Clever kid!)

An Equivalent while Loop

You can actually use a while loop to do the same thing as a for loop; for loops are just

more concise. rewrite fiveTimes.py to use a while loop equivalent of a for loop.

print('My name is')

i = 0

while i < 5:

print('Jimmy Five Times (' + str(i) + ')')

i = i + 1

You can view the execution of this program at https://autbor.com/fivetimeswhile/. If

you run this program, the output should look the same as the fiveTimes.py program,

which uses a for loop.

The Starting, Stopping, and Stepping Arguments to range()

Some functions can be called with multiple arguments separated by a comma, and range()

is one of them. This lets you change the integer passed to range() to follow any sequence

/

of integers, including starting at a number other than zero.

for i in range(12, 16):

print(i)

The first argument will be where the for variable starts, and the second

argument will be up to, but not including, the number to stop at.

12

13

14

15

The range() function can also be called with three arguments. The first two arguments

will be the start and stop values, and the third will be the step argument. The step is the

amount that the variable is increased by after each iteration.

for i in range(0, 10, 2):

print(i)

So calling range(0, 10, 2) will count from zero to eight by intervals of two.

0

2

4

6

8

The range() function is flexible in the sequence of numbers it produces for for loops.

For example (I never apologize for my puns), you can even use a negative number for

the step argument to make the for loop count down instead of up.

for i in range(5, -1, -1):

print(i)

This for loop would have the following output:

5

/

4

3

2

1

0

Running a for loop to print i with range(5, -1, -1) should print from five down to zero.

IMPORTING MODULES

All Python programs can call a basic set of functions called built-in functions, including

the print(), input(), and len() of

modules called the standard library. Each module is a Python program that contains a

related group of functions that can be embedded in your programs. For example, the math

module has mathematics-related functions, the random module has random number-

related functions, and so on.

Before you can use the functions in a module, you must import the module with an

import statement. In code, an import statement consists of the following:

The import keyword

The name of the module

Optionally, more module names, as long as they are separated by commas

Once you import a module, you can use all the cool functions of that module.

give it a try with the random module, which will give us access to the random.randint()

function.

Enter this code into the file editor, and save it as printRandom.py:

import random

for i in range(5):
When you save your Python scripts, take care not to give them a name that is used by
print(random.randint(1, 10))

random.py, sys.py, os.py, or math.py. If you

accidentally name one of your programs, say, random.py, and use an import random

statement in another program, your program would import your random.py file instead

random module. This can lead to errors such as AttributeError: module

'random' has no attribute 'randint', since your random.py

the real random -in Python functions

either, such as print() or input().

/

When you run this program, the output will look something like this:

4

1

8

4

1

You can view the execution of this program at https://autbor.com/printrandom/. The

random.randint() function call evaluates to a random integer value between the two integers

that you pass it. Since randint() is in the random module, you must first type random. in

front of the function name to tell Python to look for this function inside the random

module.

import random, sys, os, math

import statement that imports four different modules:

more about

them later in the book.

from import Statements

An alternative form of the import statement is composed of the from keyword, followed by

the module name, the import keyword, and a star; for example, from random import *.

With this form of import statement, calls to functions in random will not need the

random. prefix. However, using the full name makes for more readable code, so it is better

to use the import random form of the statement.

ENDING A PROGRAM EARLY WITH THE SYS.EXIT() FUNCTION

The last flow control concept to cover is how to terminate the program. Programs always

terminate if the program execution reaches the bottom of the instructions. However, you

can cause the program to terminate, or exit, before the last instruction by calling the

sys.exit() function. Since this function is in the sys module, you have to import sys before

your program can use it.

Open a file editor window and enter the following code, saving it as exitExample.py:

/

import sys

while True:

print('Type exit to exit.')

response = input()

if response == 'exit':

sys.exit()

print('You typed ' + response + '.')

Run this program in IDLE. This program has an infinite loop with no break statement

inside. The only way this program will end is if the execution reaches the sys.exit() call.

When response is equal to exit, the line containing the sys.exit() call is executed. Since the

response variable is set by the input() function, the user must enter exit in order to stop the

program.

A SHORT PROGRAM: GUESS THE NUMBER

program, the output will look something like this:

I am thinking of a number between 1 and 20.

Take a guess.

10

Your guess is too low.

Take a guess.

15

Your guess is too low.

Take a guess.

17

Your guess is too high.

Take a guess.

16

Good job! You guessed my number in 4 guesses!

n

this

Enter the following source code into the file editor, and save the file as

guessTheNumber.py:

/

This is a guess the number game.

import random

secretNumber = random.randint(1, 20)

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.

for guessesTaken in range(1, 7):

print('Take a guess.')

guess = int(input())

if guess < secretNumber:

print('Your guess is too low.')

elif guess > secretNumber:

print('Your guess is too high.')

else:

break # This condition is the correct guess!

if guess == secretNumber:

print('Good job! You guessed my number in ' + str(guessesTaken) + '

guesses!')

else:

print('Nope. The number I was thinking of was ' + str(secretNumber))

You can view the execution of this program at https://autbor.com/guessthenumber/.

This is a guess the number game.

import random

secretNumber = random.randint(1, 20)

First, a comment at the top of the code explains what the program does. Then, the

program imports the random module so that it can use the random.randint() function to

generate a number for the user to guess. The return value, a random integer between 1

and 20, is stored in the variable secretNumber.

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.

for guessesTaken in range(1, 7):

/

print('Take a guess.')

guess = int(input())

The program tells the player that it has come up with a secret number and will give

the player six chances to guess it. The code that lets the player enter a guess and checks

that guess is in a for loop that will loop at most six times. The first thing that happens in

the loop is that the player types in a guess. Since input() returns a string, its return value is

passed straight into int(), which translates the string into an integer value. This gets stored

in a variable named guess.

if guess < secretNumber:

print('Your guess is too low.')

elif guess > secretNumber:

print('Your guess is too high.')

These few lines of code check to see whether the guess is less than or greater than the

secret number. In either case, a hint is printed to the screen.

else:

break # This condition is the correct guess!

If the guess is neither higher nor lower than the secret number, then it must be equal to the secret
number in which case, you want the program execution to break out of the for loop.

if guess == secretNumber:

print('Good job! You guessed my number in ' + str(guessesTaken) + ' guesses!')

else:

print('Nope. The number I was thinking of was ' + str(secretNumber))

After the for loop, the previous if...else statement checks whether the player has

correctly guessed the number and then prints an appropriate message to the screen. In

both cases, the program displays a variable that contains an integer value (guessesTaken

and secretNumber). Since it must concatenate these integer values to strings, it passes these

variables to the str() function, which returns the string value form of these integers. Now

these strings can be concatenated with the + operators before finally being passed to the

print() function call.

/

A SHORT PROGRAM: ROCK, PAPER, SCISSORS

so far to create a simple rock, paper,

scissors game. The output will look like this:

ROCK, PAPER, SCISSORS

0 Wins, 0 Losses, 0 Ties

Enter your move: (r)ock (p)aper (s)cissors or (q)uit

p

PAPER versus...

PAPER

It is a tie!

0 Wins, 1 Losses, 1 Ties

Enter your move: (r)ock (p)aper (s)cissors or (q)uit

s

SCISSORS versus...

PAPER

You win!

1 Wins, 1 Losses, 1 Ties

Enter your move: (r)ock (p)aper (s)cissors or (q)uit

q

 Type the following source code into the file editor, and save the file as rpsGame.py:

import random, sys

print('ROCK, PAPER, SCISSORS')

These variables keep track of the number of wins, losses, and ties.

wins = 0

losses = 0

ties = 0

while True: # The main game loop.

print('%s Wins, %s Losses, %s Ties' % (wins, losses, ties))

while True: # The player input loop.

print('Enter your move: (r)ock (p)aper (s)cissors or (q)uit')

playerMove = input()

if playerMove == 'q':

sys.exit() # Quit the program.

/

/

if playerMove == 'r' or playerMove == 'p' or playerMove == 's':

break # Break out of the player input loop.

print('Type one of r, p, s, or q.')

Display what the player chose:

if playerMove == 'r':

print('ROCK versus...')

elif playerMove == 'p':

print('PAPER versus...')

elif playerMove == 's':

print('SCISSORS versus...')

Display what the computer chose:

randomNumber = random.randint(1, 3)

if randomNumber == 1:

computerMove = 'r'

print('ROCK')

elif randomNumber == 2:

computerMove = 'p'

print('PAPER')

elif randomNumber == 3:

computerMove = 's'

print('SCISSORS')

Display and record the win/loss/tie:

if playerMove == computerMove:

print('It is a tie!')

ties = ties + 1

elif playerMove == 'r' and computerMove == 's':

print('You win!')

wins = wins + 1

elif playerMove == 'p' and computerMove == 'r':

print('You win!')

wins = wins + 1

elif playerMove == 's' and computerMove == 'p':

print('You win!')

wins = wins + 1

elif playerMove == 'r' and computerMove == 'p':

print('You lose!')

losses = losses + 1

elif playerMove == 'p' and computerMove == 's':

print('You lose!')

losses = losses + 1

elif playerMove == 's' and computerMove == 'r':

print('You lose!')

losses = losses + 1

import random, sys

print('ROCK, PAPER, SCISSORS')

These variables keep track of the number of wins, losses, and ties.

wins = 0

losses = 0

ties = 0

First, we import the random and sys module so that our program can call the

random.randint() and sys.exit() functions. We also set up three variables to keep track of how

many wins, losses, and ties the player has had.

while True: # The main game loop.

print('%s Wins, %s Losses, %s Ties' % (wins, losses, ties))

while True: # The player input loop.

print('Enter your move: (r)ock (p)aper (s)cissors or (q)uit')

playerMove = input()

if playerMove == 'q':

sys.exit() # Quit the program.

if playerMove == 'r' or playerMove == 'p' or playerMove == 's':

break # Break out of the player input loop.

print('Type one of r, p, s, or q.')

This program uses a while loop inside of another while loop. The first loop is the main

game loop, and a single game of rock, paper, scissors is player on each iteration through

this loop. The second loop asks for input from the player, and keeps looping until the

/

player has entered an r, p, s, or q for their move. The r, p, and s correspond to rock,

paper, and scissors, respectively, while the q means the player intends to quit. In that case,

sys.exit() is called and the program exits. If the player has entered r, p, or s, the execution

breaks out of the loop. Otherwise, the program reminds the player to enter r, p, s, or q and

goes back to the start of the loop.

Display what the player chose:

if playerMove == 'r':

print('ROCK versus...')

elif playerMove == 'p':

print('PAPER versus...')

elif playerMove == 's':

print('SCISSORS versus...')

Display what the computer chose:

randomNumber = random.randint(1, 3)

if randomNumber == 1:

computerMove = 'r'

print('ROCK')

elif randomNumber == 2:

computerMove = 'p'

print('PAPER')

elif randomNumber == 3:

computerMove = 's'

print('SCISSORS')

elected. Since random.randint() can only return

a random number, the 1, 2, or 3 integer value it returns is stored in a variable named

randomNumber. The program stores a 'r', 'p', or 's' string in computerMove based on the integer

in randomNumber, as well move.

Display and record the win/loss/tie:

if playerMove == computerMove:

print('It is a tie!')

ties = ties + 1

elif playerMove == 'r' and computerMove == 's':

print('You win!')

/

wins = wins + 1

elif playerMove == 'p' and computerMove == 'r':

print('You win!')

wins = wins + 1

elif playerMove == 's' and computerMove == 'p':

print('You win!')

wins = wins + 1

elif playerMove == 'r' and computerMove == 'p':

print('You lose!')

losses = losses + 1

elif playerMove == 'p' and computerMove == 's':

print('You lose!')

losses = losses + 1

elif playerMove == 's' and computerMove == 'r':

print('You lose!')

losses = losses + 1

Finally, the program compares the strings in playerMove and computerMove, and displays

the results on the screen. It also increments the wins, losses, or ties variable appropriately.

Once the execution reaches the end, it jumps back to the start of the main program loop

to begin another game.

SUMMARY

By using expressions that evaluate to True or False (also called conditions), you can write

programs that make decisions on what code to execute and what code to skip. You can

also execute code over and over again in a loop while a certain condition evaluates to

True. The break and continue statements are useful if you need to exit a loop or jump back

to the start.

These flow control statements will let you write more intelligent programs. You can

also use another type of flow control by writing your own functions, which is the topic of

the next chapter.

PRACTICE QUESTIONS

1. What are the two values of the Boolean data type? How do you write them?

2. What are the three Boolean operators?

3. Write out the truth tables of each Boolean operator (that is, every possible

combination of Boolean values for the operator and what they evaluate to).

4. What do the following expressions evaluate to?

/

/

(5 > 4) and (3 == 5)

not (5 > 4)

(5 > 4) or (3 == 5)

not ((5 > 4) or (3 == 5))

(True and True) and (True == False)

(not False) or (not True)

5. What are the six comparison operators?

6. What is the difference between the equal to operator and the assignment operator?

7. Explain what a condition is and where you would use one.

8. Identify the three blocks in this code:

spam = 0

if spam == 10:

print('eggs')

if spam > 5:

print('bacon')

else:

print('ham')

print('spam')

print('spam')

Write code that prints Hello if 1 is stored in spam, prints Howdy if 2 is stored in spam,
and prints Greetings! if anything else is stored in spam.

9. What keys can you press if your program is stuck in an infinite loop?

10. What is the difference between break and continue?

11. What is the difference between range(10), range(0, 10), and range(0, 10, 1) in a for loop?

12. Write a short program that prints the numbers 1 to 10 using a for loop. Then write an

equivalent program that prints the numbers 1 to 10 using a while loop.

13. If you had a function named bacon() inside a module named spam, how would you call

it after importing spam?

FUNCTIONS

already familiar with the print(), input(), and len() functions from the previous

chapters. Python provides several built-in functions like these, but you can also write

your own functions. A function is like a miniprogram within a program.

 /

file editor and save it as helloFunc.py:

def hello():

print('Howdy!')

print('Howdy!!!')

print('Hello there.')

hello()

hello()

hello()

You can view the execution of this program at https://autbor.com/hellofunc/. The first

line is a def statement , which defines a function named hello(). The code in the block

that follows the def statement is the body of the function. This code is executed when

the function is called, not when the function is first defined.

The hello() lines after the function are function calls. In code, a function call is just

 possibly with some number of arguments

in between the parentheses. When the program execution reaches these calls, it will jump

to the top line in the function and begin executing the code there. When it reaches the

end of the function, the execution returns to the line that called the function and

continues moving through the code as before.

Since this program calls hello() three times, the code in the hello() function is executed

three times. When you run this program, the output looks like this:

Howdy!

Howdy!!!

Hello there.

Howdy!

Howdy!!!

Hello there.

Howdy!

Howdy!!!

/

print('Howdy!')

print('Howdy!!!')

print('Hello there.')

print('Howdy!')

print('Howdy!!!')

print('Hello there.')

print('Howdy!')

print('Howdy!!!')

print('Hello there.')

In general, you always want to avoid duplicating code because if you ever decide to

update the code if, for example, you find a bug you need to fix to

remember to change the code everywhere you copied it.

As you get more programming e deduplicating

code, which means getting rid of duplicated or copy-and-pasted code. Deduplication

makes your programs shorter, easier to read, and easier to update.

DEF STATEMENTS WITH PARAMETERS

When you call the print() or len() function, you pass them values, called arguments, by

typing them between the parentheses. You can also define your own functions that accept

arguments. Type this example into the file editor and save it as helloFunc2.py:

def hello(name):

print('Hello, ' + name)

hello('Alice')

hello('Bob')

When you run this program, the output looks like this:

Hello, Alice

Hello, Bob

You can view the execution of this program at https://autbor.com/hellofunc2/. The

definition of the hello() function in this program has a parameter called name .

Parameters are variables that contain arguments. When a function is called with

arguments, the arguments are stored in the parameters. The first time the hello() function

is called, it is passed the argument 'Alice' . The program execution enters the function,

/

and the parameter name is automatically set to 'Alice', which is what gets printed by the

print() statement .

One special thing to note about parameters is that the value stored in a parameter is

forgotten when the function returns. For example, if you added print(name) after hello('Bob')

in the previous program, the program would give you a NameError because there is no

variable named name. This variable is destroyed after the function call hello('Bob') returns,

so print(name) would refer to a name variable that does not exist.

is.

Define, Call, Pass, Argument, Parameter

The terms define, call, pass, argument, and parameter

code example to review these terms:

def sayHello(name):

print('Hello, ' + name)

sayHello('Al')

To define a function is to create it, just like an assignment statement like spam = 42

creates the spam variable. The def statement defines the sayHello() function . The

sayHello('Al') line calls the now-created function, sending the execution to the top of the

passing the string value 'Al' to the

function. A value being passed to a function in a function call is an argument. The

argument 'Al' is assigned to a local variable named name. Variables that have arguments

assigned to them are parameters.

precisely what the text in this chapter means.

RETURN VALUES AND RETURN STATEMENTS

When you call the len() function and pass it an argument such as 'Hello', the function call

evaluates to the integer value 5, which is the length of the string you passed it. In general,

the value that a function call evaluates to is called the return value of the function.

When creating a function using the def statement, you can specify what the return

value should be with a return statement. A return statement consists of the following:

The return keyword

The value or expression that the function should return

/

When an expression is used with a return statement, the return value is what this

expression evaluates to. For example, the following program defines a function that

returns a different string depending on what number it is passed as an argument. Enter

this code into the file editor and save it as magic8Ball.py:

import random

def getAnswer(answerNumber):

if answerNumber == 1:

return 'It is certain'

elif answerNumber == 2:

return 'It is decidedly so'

elif answerNumber == 3:

return 'Yes'

elif answerNumber == 4:

return 'Reply hazy try again'

elif answerNumber == 5:

return 'Ask again later'

elif answerNumber == 6:

return 'Concentrate and ask again'

elif answerNumber == 7:

return 'My reply is no'

elif answerNumber == 8:

return 'Outlook not sogood'

elif answerNumber == 9:

return 'Very doubtful'

r = random.randint(1, 9)

fortune = getAnswer(r)

print(fortune)

You can view the execution of this program at https://autbor.com/magic8ball/. When

this program starts, Python first imports the random module . Then the getAnswer()

function is defined . Because the function is being defined (and not called), the

execution skips over the code in it. Next, the random.randint() function is called with two

arguments: 1 and 9 . It evaluates to a random integer between 1 and 9 (including 1 and 9

themselves), and this value is stored in a variable named r.

The getAnswer() function is called with r as the argument . The program execution

moves to the top of the getAnswer() function , and the value r is stored in a parameter

named answerNumber. Then, depending on the value in answerNumber, the function returns

/

one of many possible string values. The program execution returns to the line at the

bottom of the program that originally called getAnswer() . The returned string is

assigned to a variable named fortune, which then gets passed to a print() call and is

printed to the screen.

Note that since you can pass return values as an argument to another function call,

you could shorten these three lines:

r = random.randint(1, 9)

fortune = getAnswer(r)

print(fortune)

to this single equivalent line:

print(getAnswer(random.randint(1, 9)))

Remember, expressions are composed of values and operators. A function call can be

used in an expression because the call evaluates to its return value.

THE NONE VALUE

In Python, there is a value called None, which represents the absence of a value. The None

value is the only value of the NoneType data type. (Other programming languages might

call this value null, nil, or undefined.) Just like the Boolean True and False values, None must

be typed with a capital N.

This value-without-a-value can be helpful when you need to store something that

iable. One place where None is used is as the

return value of print(). The print() need

to return anything in the same way len() or input() does. But since all function calls need to

evaluate to a return value, print() returns None. To see this in action, enter the following

into the interactive shell:

>>> spam = print('Hello!')

Hello!

>>> None == spam

True

Behind the scenes, Python adds return None to the end of any function definition with

no return statement. This is similar to how a while or for loop implicitly ends with a continue

statement. Also, if you use a return statement without a value (that is, just the return

keyword by itself), then None is returned.

/

KEYWORD ARGUMENTS AND THE PRINT() FUNCTION

Most arguments are identified by their position in the function call. For example,

random.randint(1, 10) is different from random.randint(10, 1). The function call random.randint(1,

10) will return a random integer between 1 and 10 because the first argument is the low

end of the range and the second argument is the high end (while random.randint(10, 1)

causes an error).

However, rather than through their position, keyword arguments are identified by the

keyword put before them in the function call. Keyword arguments are often used for

optional parameters. For example, the print() function has the optional parameters end and

sep to specify what should be printed at the end of its arguments and between its

arguments (separating them), respectively.

If you ran a program with the following code:

print('Hello')

print('World')

the output would look like this:

Hello

World

The two outputted strings appear on separate lines because the print() function

automatically adds a newline character to the end of the string it is passed. However, you

can set the end keyword argument to change the newline character to a different string.

For example, if the code were this:

print('Hello', end='')

print('World')

the output would look like this:

HelloWorld

The output is printed on a single line because there is no longer a newline printed

after 'Hello'. Instead, the blank string is printed. This is useful if you need to disable the

newline that gets added to the end of every print() function call.

Similarly, when you pass multiple string values to print(), the function will

automatically separate them with a single space. Enter the following into the interactive

shell:

/

>>> print('cats', 'dogs', 'mice')

cats dogs mice

But you could replace the default separating string by passing the sep keyword

argument a different string. Enter the following into the interactive shell:

>>> print('cats', 'dogs', 'mice', sep=',')

cats,dogs,mice

You

have to learn about the list and dictionary data types in the next two chapters. For now,

just know that some functions have optional keyword arguments that can be specified

when the function is called.

THE CALL STACK

Imagine that you have a meandering conversation with someone. You talk about your

friend Alice, which then reminds you of a story about your coworker Bob, but first you

have to explain something about your cousin Carol. You finish you story about Carol and

go back to talking about Bob, and when you finish your story about Bob, you go back to

talking about Alice. But then you are reminded about your brother David, so you tell a

story about him, and then get back to finishing your original story about Alice. Your

conversation followed a stack-like structure, like in Figure 3-1. The conversation is stack-

like because the current topic is always at the top of the stack.

Figure 3-1: Your meandering conversation stack

on a one-way trip to the top of a function. Python will remember which line of code

called the function so that the execution can return there when it encounters a return

statement. If that original function called other functions, the execution would return to

those function calls first, before returning from the original function call.

Open a file editor window and enter the following code, saving it as

abcdCallStack.py:

def a():

print('a() starts')

/

b()

d()

print('a() returns')

def b():

print('b() starts')

c()

print('b() returns')

def c():

print('c() starts')

print('c() returns')

def d():

print('d() starts')

print('d() returns')

a()

If you run this program, the output will look like this:

a() starts

b() starts

c() starts

c() returns

b() returns

d() starts

d() returns

a() returns

You can view the execution of this program at https://autbor.com/abcdcallstack/.

When a() is called , it calls b() , which in turn calls c() . The c()

anything; it just displays c() starts and c() returns before returning to the line in b() that

called it . Once execution returns to the code in b() that called c(), it returns to the line

in a() that called b() . The execution continues to the next line in the b() function ,

which is a call to d(). Like the c() function, the d() function also call anything. It

just displays d() starts and d() returns before returning to the line in b() that called it. Since

b() contains no other code, the execution returns to the line in a() that called b() . The

last line in a() displays a() returns before returning to the original a() call at the end of the

program .

/

The call stack is how Python remembers where to return the execution after each

handles it behind the scenes. When your program calls a function, Python creates a

frame object on the top of the call stack. Frame objects store the line number of the

original function call so that Python can remember where to return. If another function

call is made, Python puts another frame object on the call stack above the other one.

When a function call returns, Python removes a frame object from the top of the stack

and moves the execution to the line number stored in it. Note that frame objects are

always added and removed from the top of the stack and not from any other place.

Figure 3-2 illustrates the state of the call stack in abcdCallStack.py as each function is

called and returns.

Figure 3-2: The frame objects of the call stack as abcdCallStack.py calls and returns from functions

The top of the call stack is which function the execution is currently in. When the call

stack is empty, the execution is on a line outside of all functions.

programs. enough to understand that function calls return to the line number they

were called from. However, understanding call stacks makes it easier to understand local

and global scopes, described in the next section.

LOCAL AND GLOBAL SCOPE

Parameters and variables that are assigned in a called function are said to exist in that

local scope. Variables that are assigned outside all functions are said to exist

in the global scope. A variable that exists in a local scope is called a local variable,

while a variable that exists in the global scope is called a global variable. A variable

must be one or the other; it cannot be both local and global.

Think of a scope as a container for variables. When a scope is destroyed, all the

values stored in the variables are forgotten. There is only one global scope, and it

is created when your program begins. When your program terminates, the global scope is

destroyed, and all its variables are forgotten. Otherwise, the next time you ran a program,

the variables would remember their values from the last time you ran it.

A local scope is created whenever a function is called. Any variables assigned in the

s, the local

scope is destroyed, and these variables are forgotten. The next time you call the function,

/

the local variables will not remember the values stored in them from the last time the

function was called. Local variables are also stored in frame objects on the call stack.

Scopes matter for several reasons:

Code in the global scope, outside of all functions, cannot use any local variables.

However, code in a local scope can access global variables.

scope cannot use variables in any other local scope.

You can use the same name for different variables if they are in different scopes.

That is, there can be a local variable named spam and a global variable also named

spam.

The reason Python has different scopes instead of just making everything a global

variable is so that when variables are modified by the code in a particular call to a

function, the function interacts with the rest of the program only through its parameters

and the return value. This narrows down the number of lines of code that may be causing

a bug. If your program contained nothing but global variables and had a bug because of a

variable being set to a bad value, then it would be hard to track down where this bad

value was set. It could have been set from anywhere in the program, and your program

could be hundreds or thousands of lines long! But if the bug is caused by a local variable

with a bad value, you know that only the code in that one function could have set it

incorrectly.

While using global variables in small programs is fine, it is a bad habit to rely on

global variables as your programs get larger and larger.

Local Variables Cannot Be Used in the Global Scope

Consider this program, which will cause an error when you run it:

def spam():

eggs = 31337

spam()

print(eggs)

If you run this program, the output will look like this:

Traceback (most recent call last):

File "C:/test1.py", line 4, in <module>

print(eggs)

NameError: name 'eggs' is not defined

/

The error happens because the eggs variable exists only in the local scope created

when spam() is called . Once the program execution returns from spam, that local scope

is destroyed, and there is no longer a variable named eggs. So when your program tries to

run print(eggs), Python gives you an error saying that eggs is not defined. This makes sense

if you think about it; when the program execution is in the global scope, no local scopes

bles. This is why only global variables can be used

in the global scope.

Local Scopes Cannot Use Variables in Other Local Scopes

A new local scope is created whenever a function is called, including when a function is

called from another function. Consider this program:

def spam():

eggs = 99

bacon()

print(eggs)

def bacon():

ham = 101

eggs = 0

spam()

You can view the execution of this program at https://autbor.com/otherlocalscopes/.

When the program starts, the spam() function is called , and a local scope is created.

The local variable eggs is set to 99. Then the bacon() function is called , and a second

local scope is created. Multiple local scopes can exist at the same time. In this new local

scope, the local variable ham is set to 101, and a local variable eggs which is different

from the one in spam() local scope is also created and set to 0.

When bacon() returns, the local scope for that call is destroyed, including its eggs

variable. The program execution continues in the spam() function to print the value of eggs

. Since the local scope for the call to spam() still exists, the only eggs variable is the

spam() eggs variable, which was set to 99. This is what the program prints.

The upshot is that local variables in one function are completely separate from the

local variables in another function.

Global Variables Can Be Read from a Local Scope

Consider the following program:

/

def spam():

print(eggs)

eggs = 42

spam()

print(eggs)

You can view the execution of this program at https://autbor.com/readglobal/. Since

there is no parameter named eggs or any code that assigns eggs a value in the spam()

function, when eggs is used in spam(), Python considers it a reference to the global

variable eggs. This is why 42 is printed when the previous program is run.

Local and Global Variables with the Same Name

and local variables in different scopes in Python. But, to simplify your life, avoid doing

this. To see what happens, enter the following code into the file editor and save it as

localGlobalSameName.py:

def spam():

eggs = 'spam local'

print(eggs) # prints 'spam local'

def bacon():

eggs = 'bacon local'

print(eggs) # prints 'bacon local'

spam()

print(eggs) # prints 'bacon local'

eggs = 'global'

bacon()

print(eggs) # prints 'global'

When you run this program, it outputs the following:

bacon local

spam local

bacon local

global

You can view the execution of this program at

https://autbor.com/localglobalsamename/. There are actually three different variables in

/

this program, but confusingly they are all named eggs. The variables are as follows:

A variable named eggs that exists in a local scope when spam() is called.

A variable named eggs that exists in a local scope when bacon() is called.

A variable named eggs that exists in the global scope.

Since these three separate variables all have the same name, it can be confusing to

keep track of which one is being used at any given time. This is why you should avoid

using the same variable name in different scopes.

THE GLOBAL STATEMENT

If you need to modify a global variable from within a function, use the global statement.

If you have a line such as global eggs

function, eggs riable with this

as

globalStatement.py:

def spam():

global eggs

eggs = 'spam'

eggs = 'global'

spam()

print(eggs)

When you run this program, the final print() call will output this:

spam

You can view the execution of this program at https://autbor.com/globalstatement/.

Because eggs is declared global at the top of spam() , when eggs is set to 'spam' , this

assignment is done to the globally scoped eggs. No local eggs variable is created.

There are four rules to tell whether a variable is in a local scope or global scope:

If a variable is being used in the global scope (that is, outside of all functions), then

it is always a global variable.

If there is a global statement for that variable in a function, it is a global variable.

Otherwise, if the variable is used in an assignment statement in the function, it is a

local variable.

But if the variable is not used in an assignment statement, it is a global variable.

/

NOTE

If you ever want to modify the value stored in a global variable from in a function,

you must use a global statement on that variable.

To get a better feel for these rules, an example program. Enter the following

code into the file editor and save it as sameNameLocalGlobal.py:

def spam():

global eggs

eggs = 'spam' # this is the global

def bacon():

eggs = 'bacon' # this is a local

def ham():

print(eggs) # this is the global

eggs = 42 # this is the global

spam()

print(eggs)

In the spam() function, eggs is the global eggs variable because a global statement

for eggs at the beginning of the function . In bacon(), eggs is a local variable because

an assignment statement for it in that function . In ham() , eggs is the global

variable because there is no assignment statement or global statement for it in that

function. If you run sameNameLocalGlobal.py, the output will look like this:

spam

You can view the execution of this program at

https://autbor.com/sameNameLocalGlobal/. In a function, a variable will either always

eggs

and then use the global eggs variable later in that same function.

If you try to use a local variable in a function before you assign a value to it, as in the

following program, Python will give you an error. To see this, enter the following into

the file editor and save it as sameNameError.py:

/

def spam():

print(eggs) # ERROR!

eggs = 'spam local'

eggs = 'global'

spam()

If you run the previous program, it produces an error message.

Traceback (most recent call last):

File "C:/sameNameError.py", line 6, in <module>

spam()

File "C:/sameNameError.py", line 2, in spam

print(eggs) # ERROR!

UnboundLocalError: local variable 'eggs' referenced before assignment

You can view the execution of this program at https://autbor.com/sameNameError/.

This error happens because Python sees that there is an assignment statement for eggs in

the spam() function and, therefore, considers eggs to be local. But because print(eggs) is

executed before eggs is assigned anything, the local variable eggs

will not fall back to using the global eggs variable .

Often, all you need to know about a function are its inputs (the parameters) and output value; you

always have to burden yourself with how the code actually works. When you think

about functions in this high-level way, common to say that treating a function as a

This idea is fundamental to modern programming. Later chapters in this book will show you

several modules with functions that were written by other people. While you can take a peek at the

them. And because writing functions without global variables is encouraged, you usually have

to worry about the code interacting with the rest of your program.

EXCEPTION HANDLING

Right now, getting an error, or exception, in your Python program means the entire

program will crash. You -world programs. Instead, you

want the program to detect errors, handle them, and then continue to run.

/

For example, consider the following program, which has a divide-by-zero error. Open

a file editor window and enter the following code, saving it as zeroDivide.py:

def spam(divideBy):

return 42 / divideBy

print(spam(2))

print(spam(12))

print(spam(0))

print(spam(1))

defined a function called spam, given it a parameter, and then printed the value

of that function with various parameters to see what happens. This is the output you get

when you run the previous code:

21.0

3.5

Traceback (most recent call last):

File "C:/zeroDivide.py", line 6, in <module>

print(spam(0))

File "C:/zeroDivide.py", line 2, in spam

return 42 / divideBy

ZeroDivisionError: division by zero

You can view the execution of this program at https://autbor.com/zerodivide/. A

ZeroDivisionError happens whenever you try to divide a number by zero. From the line

number given in the error message, you know that the return statement in spam() is causing

an error.

Errors can be handled with try and except statements. The code that could potentially

have an error is put in a try clause. The program execution moves to the start of a

following except clause if an error happens.

You can put the previous divide-by-zero code in a try clause and have an except clause

contain code to handle what happens when this error occurs.

def spam(divideBy):

try:

return 42 / divideBy

except ZeroDivisionError:

print('Error: Invalid argument.')

/

print(spam(2))

print(spam(12))

print(spam(0))

print(spam(1))

When code in a try clause causes an error, the program execution immediately moves

to the code in the except clause. After running that code, the execution continues as

normal. The output of the previous program is as follows:

21.0

3.5

Error: Invalid argument.

None

42.0

You can view the execution of this program at

https://autbor.com/tryexceptzerodivide/. Note that any errors that occur in function calls

in a try block will also be caught. Consider the following program, which instead has the

spam() calls in the try block:

def spam(divideBy):

return 42 / divideBy

try:

print(spam(2))

print(spam(12))

print(spam(0))

print(spam(1))

except ZeroDivisionError:

print('Error: Invalid argument.')

When this program is run, the output looks like this:

21.0

3.5

Error: Invalid argument.

You can view the execution of this program at https://autbor.com/spamintry/. The

reason print(spam(1)) is never executed is because once the execution jumps to the code in

the except clause, it does not return to the try clause. Instead, it just continues moving

down the program as normal.

/

A SHORT PROGRAM: ZIGZAG

program. This program will create a back-and-forth, zigzag pattern until the user stops it

CTRL-C. When you run this

program, the output will look something like this:

Type the following source code into the file editor, and save the file as zigzag.py:

import time, sys

indent = 0 # How many spaces to indent.

indentIncreasing = True # Whether the indentation is increasing or not.

try:

while True: # The main program loop.

print(' ' * indent, end='')

print('********')

time.sleep(0.1) # Pause for 1/10 of a second.

if indentIncreasing:

Increase the number of spaces:

indent = indent + 1

if indent == 20:

Change direction:

indentIncreasing = False

else:

Decrease the number of spaces:

indent = indent - 1

if indent == 0:

Change direction:

/

indentIncreasing = True

except KeyboardInterrupt:

sys.exit()

import time, sys

indent = 0 # How many spaces to indent.

indentIncreasing = True # Whether the indentation is increasing or not.

time and sys modules. Our program uses two variables: the

indent variable keeps track of how many spaces of indentation are before the band of

eight asterisks and indentIncreasing contains a Boolean value to determine if the amount of

indentation is increasing or decreasing.

try:

while True: # The main program loop.

print(' ' * indent, end='')

print('********')

time.sleep(0.1) # Pause for 1/10 of a second.

Next, we place the rest of the program inside a try statement. When the user presses

CTRL-C while a Python program is running, Python raises the KeyboardInterrupt exception.

If there is no try-except statement to catch this exception, the program crashes with an

ugly error message. However, for our program, we want it to cleanly handle the

KeyboardInterrupt exception by calling sys.exit(). (The code for this is in the except statement

at the end of the program.)

The while True: infinite loop will repeat the instructions in our program forever. This

involves using ' ' * indent to print the correct amount of spaces of indentation. We

want to automatically print a newline after these spaces, so we also pass end='' to the first

print() call. A second print() call prints the band of asterisks. The time.sleep()

been covered yet, but suffice it to say that it introduces a one-tenth-second pause in our

program at this point.

if indentIncreasing:

Increase the number of spaces:

indent = indent + 1

if indent == 20:

indentIncreasing = False # Change direction.

Next, we want to adjust the amount of indentation for the next time we print asterisks.

If indentIncreasing is True, then we want to add one to indent. But once indent reaches 20, we

want the indentation to decrease.

else:

Decrease the number of spaces:

indent = indent - 1

if indent == 0:

indentIncreasing = True # Change direction.

Meanwhile, if indentIncreasing was False, we want to subtract one from indent. Once

indent reaches 0, we want the indentation to increase once again. Either way, the program

execution will jump back to the start of the main program loop to print the asterisks

again.

except KeyboardInterrupt:

sys.exit()

If the user presses CTRL-C at any point that the program execution is in the try block,

the KeyboardInterrrupt exception is raised and handled by this except statement. The

program execution moves inside the except block, which runs sys.exit() and quits the

program. This way, even though the main program loop is an infinite loop, the user has a

way to shut down the program.

SUMMARY

Functions are the primary way to compartmentalize your code into logical groups. Since

the variables in functions exist in their own local scopes, the code in one function cannot

directly affect the values of variables in other functions. This limits what code could be

changing the values of your variables, which can be helpful when it comes to debugging

your code.

Functions are a great tool to help you organize your code. You can think of them as

black boxes: they have inputs in the form of parameters and outputs in the form of return

val

In previous chapters, a single error could cause your programs to crash. In this

chapter, you learned about try and except statements, which can run code when an error

has been detected. This can make your programs more resilient to common error cases.

/

PRACTICE QUESTIONS

1. Why are functions advantageous to have in your programs?

2. When does the code in a function execute: when the function is defined or when the

function is called?

3. What statement creates a function?

4. What is the difference between a function and a function call?

5. How many global scopes are there in a Python program? How many local scopes?

6. What happens to variables in a local scope when the function call returns?

7. What is a return value? Can a return value be part of an expression?

8. If a function does not have a return statement, what is the return value of a call to that

function?

9. How can you force a variable in a function to refer to the global variable?

10. What is the data type of None?

11. What does the import areallyourpetsnamederic statement do?

12. If you had a function named bacon() in a module named spam, how would you call it

after importing spam?

13. How can you prevent a program from crashing when it gets an error?

14. What goes in the try clause? What goes in the except clause?

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

The Collatz Sequence

Write a function named collatz() that has one parameter named number. If number is even,

then collatz() should print number // 2 and return this value. If number is odd, then collatz()

should print and return 3 * number + 1.

Then write a program that lets the user type in an integer and that keeps calling

collatz() on that number until the function returns the value 1. (Amazingly enough, this

sequence actually works for any integer sooner or later, using this sequence,

why. Your program is exploring

called the Collatz sequence, sometimes called simplest impossible math

Remember to convert the return value from input() to an integer with the int() function;

otherwise, it will be a string value.

Hint: An integer number is even if number % 2 == 0 number % 2 == 1.

The output of this program could look something like this:

Enter number:
/

3

10

5

16

8

4

2

1

/

LISTS

 in

earnest is the list data type and its cousin, the tuple. Lists and tuples can contain multiple

values, which makes writing programs that handle large amounts of data easier. And

since lists themselves can contain other lists, you can use them to arrange data into /

hierarchical structures.

 which

are functions that are tied to va the

sequence data types (lists, tuples, and strings) and show how they compare with each

other. type.

THE LIST DATA TYPE

A list is a value that contains multiple values in an ordered sequence. The term list value

refers to the list itself (which is a value that can be stored in a variable or passed to a

function like any other value), not the values inside the list value. A list value looks like

this: ['cat', 'bat', 'rat', 'elephant']. Just as string values are typed with quote characters to mark

where the string begins and ends, a list begins with an opening square bracket and ends

with a closing square bracket, []. Values inside the list are also called items. Items are

separated with commas (that is, they are comma-delimited). For example, enter the

following into the interactive shell:

>>> [1, 2, 3]

[1, 2, 3]

>>> ['cat', 'bat', 'rat', 'elephant']

['cat', 'bat', 'rat', 'elephant']

>>> ['hello', 3.1415, True, None, 42]

['hello', 3.1415, True, None, 42]

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam

['cat', 'bat', 'rat', 'elephant']

The spam variable is still assigned only one value: the list value. But the list value

itself contains other values. The value [] is an empty list that contains no values, similar

to '', the empty string.

Getting Individual Values in a List with Indexes

Say you have the list ['cat', 'bat', 'rat', 'elephant'] stored in a variable named spam. The Python

code spam[0] would evaluate to 'cat', and spam[1] would evaluate to 'bat', and so on. The

integer inside the square brackets that follows the list is called an index. The first value

in the list is at index 0, the second value is at index 1, the third value is at index 2, and so

on. Figure 4-1 shows a list value assigned to spam, along with what the index expressions

would evaluate to. Note that because the first index is 0, the last index is one less than the

size of the list; a list of four items has 3 as its last index.
/

Figure 4-1: A list value stored in the variable spam, showing which value each index refers to

For example, enter the following expressions into the interactive shell. Start by

assigning a list to the variable spam.

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[0]

'cat'

>>> spam[1]

'bat'

>>> spam[2]

'rat'

>>> spam[3]

'elephant'

>>> ['cat', 'bat', 'rat', 'elephant'][3]

'elephant'

>>> 'Hello, ' + spam[0]

'Hello, cat'

>>> 'The ' + spam[1] + ' ate the ' + spam[0] + '.'

'The bat ate the cat.'

Notice that the expression 'Hello, ' + spam[0] evaluates to 'Hello, ' + 'cat' because spam[0]

evaluates to the string 'cat'. This expression in turn evaluates to the string value 'Hello, cat'

.

Python will give you an IndexError error message if you use an index that exceeds the

number of values in your list value.

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[10000]

Traceback (most recent call last):

File "<pyshell#9>", line 1, in <module>

spam[10000]

IndexError: list index out of range

Indexes can be only integer values, not floats. The following example will cause a

TypeError error:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[1] /

'bat'

>>> spam[1.0]

Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>

spam[1.0]

TypeError: list indices must be integers or slices, not float

>>> spam[int(1.0)]

'bat'

Lists can also contain other list values. The values in these lists of lists can be

accessed using multiple indexes, like so:

>>> spam = [['cat', 'bat'], [10, 20, 30, 40, 50]]

>>> spam[0]

['cat', 'bat']

>>> spam[0][1]

'bat'

>>> spam[1][4]

50

The first index dictates which list value to use, and the second indicates the value

within the list value. For example, spam[0][1] prints 'bat', the second value in the first list.

If you only use one index, the program will print the full list value at that index.

Negative Indexes

While indexes start at 0 and go up, you can also use negative integers for the index. The

integer value -1 refers to the last index in a list, the value -2 refers to the second-to-last

index in a list, and so on. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[-1]

'elephant'

>>> spam[-3]

'bat'

>>> 'The ' + spam[-1] + ' is afraid of the ' + spam[-3] + '.'

'The elephant is afraid of the bat.'

Getting a List from Another List with Slices

Just as an index can get a single value from a list, a slice can get several values from a

list, in the form of a new list. A slice is typed between square brackets, like an index, but

it has two integers separated by a colon. Notice the difference between indexes and

slices.

spam[2] is a list with an index (one integer).

spam[1:4] is a list with a slice (two integers).

In a slice, the first integer is the index where the slice starts. The second integer is the

index where the slice ends. A slice goes up to, but will not include, the value at the

second index. A slice evaluates to a new list value. Enter the following into the

interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[0:4]

['cat', 'bat', 'rat', 'elephant']

>>> spam[1:3]

['bat', 'rat']

>>> spam[0:-1]

['cat', 'bat', 'rat']

As a shortcut, you can leave out one or both of the indexes on either side of the colon

in the slice. Leaving out the first index is the same as using 0, or the beginning of the list.

Leaving out the second index is the same as using the length of the list, which will slice

to the end of the list. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[:2]

['cat', 'bat']

>>> spam[1:]

['bat', 'rat', 'elephant']

>>> spam[:]

['cat', 'bat', 'rat', 'elephant']

The len() function will return the number of values that are in a list value passed to it, just

like it can count the number of characters in a string value. Enter the following into the

interactive shell:

/

>>> spam = ['cat', 'dog', 'moose']

>>> len(spam)

3

Changing Values in a List with Indexes

Normally, a variable name goes on the left side of an assignment statement, like spam =

42. However, you can also use an index of a list to change the value at that index. For

example, spam[1] = 'aardvark' 1 in the list

spam to the string 'aardvark' shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam[1] = 'aardvark'

>>> spam

['cat', 'aardvark', 'rat', 'elephant']

>>> spam[2] = spam[1]

>>> spam

['cat', 'aardvark', 'aardvark', 'elephant']

>>> spam[-1] = 12345

>>> spam

['cat', 'aardvark', 'aardvark', 12345]

List Concatenation and List Replication

Lists can be concatenated and replicated just like strings. The + operator combines two

lists to create a new list value and the * operator can be used with a list and an integer

value to replicate the list. Enter the following into the interactive shell:

>>> [1, 2, 3] + ['A', 'B', 'C']

[1, 2, 3, 'A', 'B', 'C']

>>> ['X', 'Y', 'Z'] * 3

['X', 'Y', 'Z', 'X', 'Y', 'Z', 'X', 'Y', 'Z']

>>> spam = [1, 2, 3]

>>> spam = spam + ['A', 'B', 'C']

>>> spam

[1, 2, 3, 'A', 'B', 'C']

Removing Values from Lists with del Statements

The del statement will delete values at an index in a list. All of the values in the list after

the deleted value will be moved up one index. For example, enter the following into the /

interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> del spam[2]

>>> spam

['cat', 'bat', 'elephant']

>>> del spam[2]

>>> spam

['cat', 'bat']

The del statement can also be used on a simple variable to delete it, as if it were an

 a

NameError error because the variable no longer exists. In practice, you almost never need

to delete simple variables. The del statement is mostly used to delete values from lists.

WORKING WITH LISTS

When you first begin writing programs, tempting to create many individual variables

to store a group of similar values. For example, if I wanted to store the names of my cats,

I might be tempted to write code like this:

catName1 = 'Zophie'

catName2 = 'Pooka'

catName3 = 'Simon'

catName4 = 'Lady Macbeth'

catName5 = 'Fat-tail'

catName6 = 'Miss Cleo'

cats, I swear.) For one thing, if the number of cats changes, your program will never be

able to store more cats than you have variables. These types of programs also have a lot

of duplicate or nearly identical code in them. Consider how much duplicate code is in the

following program, which you should enter into the file editor and save as

allMyCats1.py:

print('Enter the name of cat 1:')

catName1 = input()

print('Enter the name of cat 2:')

catName2 = input()

print('Enter the name of cat 3:')

catName3 = input() /

print('Enter the name of cat 4:')

catName4 = input()

print('Enter the name of cat 5:')

catName5 = input()

print('Enter the name of cat 6:')

catName6 = input()

print('The cat names are:')

print(catName1 + ' ' + catName2 + ' ' + catName3 + ' ' + catName4 + ' ' +

catName5 + ' ' + catName6)

Instead of using multiple, repetitive variables, you can use a single variable that

contains a list value. For example, a new and improved version of the

allMyCats1.py program. This new version uses a single list and can store any number of

cats that the user types in. In a new file editor window, enter the following source code

and save it as allMyCats2.py:

catNames = []

while True:

print('Enter the name of cat ' + str(len(catNames) + 1) +

' (Or enter nothing to stop.):')

name = input()

if name == '':

break

catNames = catNames + [name] # list concatenation

print('The cat names are:')

for name in catNames:

print(' ' + name)

When you run this program, the output will look something like this:

Enter the name of cat 1 (Or enter nothing to stop.):

Zophie

Enter the name of cat 2 (Or enter nothing to stop.):

Pooka

Enter the name of cat 3 (Or enter nothing to stop.):

Simon

Enter the name of cat 4 (Or enter nothing to stop.):

Lady Macbeth

Enter the name of cat 5 (Or enter nothing to stop.):

Fat-tail

Enter the name of cat 6 (Or enter nothing to stop.): /

Miss Cleo

Enter the name of cat 7 (Or enter nothing to stop.):

The cat names are:

Zophie

Pooka

Simon

Lady Macbeth

Fat-tail

Miss Cleo

You can view the execution of these programs at https://autbor.com/allmycats1/ and

https://autbor.com/allmycats2/. The benefit of using a list is that your data is now in a

structure, so your program is much more flexible in processing the data than it would be

with several repetitive variables.

Using for Loops with Lists

In Chapter 2, you learned about using for loops to execute a block of code a certain

number of times. Technically, a for loop repeats the code block once for each item in a

list value. For example, if you ran this code:

for i in range(4):

print(i)

the output of this program would be as follows:

0

1

2

3

This is because the return value from range(4) is a sequence value that Python

considers similar to [0, 1, 2, 3] on

page 93.) The following program has the same output as the previous one:

for i in [0, 1, 2, 3]:

print(i)

The previous for loop actually loops through its clause with the variable i set to a

successive value in the [0, 1, 2, 3] list in each iteration. /

A common Python technique is to use range(len(someList)) with a for loop to iterate over

the indexes of a list. For example, enter the following into the interactive shell:

>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']

>>> for i in range(len(supplies)):

... print('Index ' + str(i) + ' in supplies is: ' + supplies[i])

Index 0 in supplies is: pens

Index 1 in supplies is: staplers

Index 2 in supplies is: flamethrowers

Index 3 in supplies is: binders

Using range(len(supplies)) in the previously shown for loop is handy because the code in

the loop can access the index (as the variable i) and the value at that index (as supplies[i]).

Best of all, range(len(supplies)) will iterate through all the indexes of supplies, no matter how

many items it contains.

The in and not in Operators

You in and not in operators.

Like other operators, in and not in are used in expressions and connect two values: a value

to look for in a list and the list where it may be found. These expressions will evaluate to

a Boolean value. Enter the following into the interactive shell:

>>> 'howdy' in ['hello', 'hi', 'howdy', 'heyas']

True

>>> spam = ['hello', 'hi', 'howdy', 'heyas']

>>> 'cat' in spam

False

>>> 'howdy' not in spam

False

>>> 'cat' not in spam

True

For example, the following program lets the user type in a pet name and then checks

to see whether the name is in a list of pets. Open a new file editor window, enter the

following code, and save it as myPets.py:

myPets = ['Zophie', 'Pooka', 'Fat-tail']

print('Enter a pet name:')

name = input()
/

if name not in myPets:

print('I do not have a pet named ' + name)

else:

print(name + ' is my pet.')

The output may look something like this:

Enter a pet name:

Footfoot

I do not have a pet named Footfoot

You can view the execution of this program at https://autbor.com/mypets/.

The Multiple Assignment Trick

The multiple assignment trick (technically called tuple unpacking) is a shortcut that lets

you assign multiple variables with the values in a list in one line of code. So instead of

doing this:

>>> cat = ['fat', 'gray', 'loud']

>>> size = cat[0]

>>> color = cat[1]

>>> disposition = cat[2]

you could type this line of code:

>>> cat = ['fat', 'gray', 'loud']

>>> size, color, disposition = cat

The number of variables and the length of the list must be exactly equal, or Python

will give you a ValueError:

>>> cat = ['fat', 'gray', 'loud']

>>> size, color, disposition, name = cat

Traceback (most recent call last):

File "<pyshell#84>", line 1, in <module>

size, color, disposition, name = cat

ValueError: not enough values to unpack (expected 4, got 3)

Using the enumerate() Function with Lists
Instead of using the range(len(someList)) technique with a for loop to obtain the integer

index of the items in the list, you can call the enumerate() function instead. On each /

iteration of the loop, enumerate() will return two values: the index of the item in the list,

and the item in the list itself. For example, this code is equivalent to the code in the

 84:

>>> supplies = ['pens', 'staplers', 'flamethrowers', 'binders']

>>> for index, item in enumerate(supplies):

... print('Index ' + str(index) + ' in supplies is: ' + item)

Index 0 in supplies is: pens

Index 1 in supplies is: staplers

Index 2 in supplies is: flamethrowers

Index 3 in supplies is: binders

The enumerate()

Using the random.choice() and random.shuffle() Functions with

Lists

The random module has a couple functions that accept lists for arguments. The

random.choice() function will return a randomly selected item from the list. Enter the

following into the interactive shell:

>>> import random

>>> pets = ['Dog', 'Cat', 'Moose']

>>> random.choice(pets)

'Dog'

>>> random.choice(pets)

'Cat'

>>> random.choice(pets)

'Cat'

You can consider random.choice(someList) to be a shorter form of

someList[random.randint(0, len(someList) 1].

The random.shuffle() function will reorder the items in a list. This function modifies the

list in place, rather than returning a new list. Enter the following into the interactive

shell:

>>> import random

>>> people = ['Alice', 'Bob', 'Carol', 'David'] /

>>> random.shuffle(people)

>>> people

['Carol', 'David', 'Alice', 'Bob']

>>> random.shuffle(people)

>>> people

['Alice', 'David', 'Bob', 'Carol']

AUGMENTED ASSIGNMENT OPERATORS

When assigning a value to a variable, you will frequently use the variable itself. For

example, after assigning 42 to the variable spam, you would increase the value in spam by

1 with the following code:

>>> spam = 42

>>> spam = spam + 1

>>> spam

43

As a shortcut, you can use the augmented assignment operator += to do the same

thing:

>>> spam = 42

>>> spam += 1

>>> spam

43

There are augmented assignment operators for the +, -, *, /, and % operators, described

in Table 4-1.

Table 4-1: The Augmented Assignment Operators

Augmented assignment statement Equivalent assignment statement

spam += 1 spam = spam + 1

spam -= 1 spam = spam - 1

spam *= 1 spam = spam * 1

spam /= 1 spam = spam / 1

spam %= 1 spam = spam % 1

The += operator can also do string and list concatenation, and the *= operator can do /

string and list replication. Enter the following into the interactive shell:

>>> spam = 'Hello,'

>>> spam += ' world!'

>>> spam

'Hello world!'

>>> bacon = ['Zophie']

>>> bacon *= 3

>>> bacon

['Zophie', 'Zophie', 'Zophie']

METHODS

A method

a list value were stored in spam, you would call the index()

shortly) on that list like so: spam.index('hello'). The method part comes after the value,

separated by a period.

Each data type has its own set of methods. The list data type, for example, has several

useful methods for finding, adding, removing, and otherwise manipulating values in a

list.

Finding a Value in a List with the index() Method

List values have an index() method that can be passed a value, and if that value exists in

 n Python

produces a ValueError error. Enter the following into the interactive shell:

>>> spam = ['hello', 'hi', 'howdy', 'heyas']

>>> spam.index('hello')

0

>>> spam.index('heyas')

3

>>> spam.index('howdy howdy howdy')

Traceback (most recent call last):

File "<pyshell#31>", line 1, in <module>

spam.index('howdy howdy howdy')

ValueError: 'howdy howdy howdy' is not in list

When there are duplicates of the value in the list, the index of its first appearance is

returned. Enter the following into the interactive shell, and notice that index() returns 1, /

not 3:
>>> spam = ['Zophie', 'Pooka', 'Fat-tail', 'Pooka']

>>> spam.index('Pooka')

1

Adding Values to Lists with the append() and insert() Methods

To add new values to a list, use the append() and insert() methods. Enter the following into

the interactive shell to call the append() method on a list value stored in the variable spam:

>>> spam = ['cat', 'dog', 'bat']

>>> spam.append('moose')

>>> spam

['cat', 'dog', 'bat', 'moose']

The previous append() method call adds the argument to the end of the list. The insert()

method can insert a value at any index in the list. The first argument to insert() is the

index for the new value, and the second argument is the new value to be inserted.

Enter the following into the interactive shell:

>>> spam = ['cat', 'dog', 'bat']

>>> spam.insert(1, 'chicken')

>>> spam

['cat', 'chicken', 'dog', 'bat']

Notice that the code is spam.append('moose') and spam.insert(1, 'chicken'), not spam =

spam.append('moose') and spam = spam.insert(1, 'chicken'). Neither append() nor insert() gives the

new value of spam as its return value. (In fact, the return value of append() and insert() is

None , the

list is modified in place. Modifying a list in place is covered in more detail later in

 on page 94.

Methods belong to a single data type. The append() and insert() methods are list

methods and can be called only on list values, not on other values such as strings or

integers. Enter the following into the interactive shell, and note the AttributeError error

messages that show up:

>>> eggs = 'hello'

>>> eggs.append('world')

Traceback (most recent call last):

File "<pyshell#19>", line 1, in <module> /

eggs.append('world')

AttributeError: 'str' object has no attribute 'append'

>>> bacon = 42

>>> bacon.insert(1, 'world')

Traceback (most recent call last):

File "<pyshell#22>", line 1, in <module>

bacon.insert(1, 'world')

AttributeError: 'int' object has no attribute 'insert'

Removing Values from Lists with the remove() Method

The remove() method is passed the value to be removed from the list it is called on. Enter

the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam.remove('bat')

>>> spam

['cat', 'rat', 'elephant']

Attempting to delete a value that does not exist in the list will result in a ValueError

error. For example, enter the following into the interactive shell and notice the error that

is displayed:

>>> spam = ['cat', 'bat', 'rat', 'elephant']

>>> spam.remove('chicken')

Traceback (most recent call last):

File "<pyshell#11>", line 1, in <module>

spam.remove('chicken')

ValueError: list.remove(x): x not in list

If the value appears multiple times in the list, only the first instance of the value will

be removed. Enter the following into the interactive shell:

>>> spam = ['cat', 'bat', 'rat', 'cat', 'hat', 'cat']

>>> spam.remove('cat')

>>> spam

['bat', 'rat', 'cat', 'hat', 'cat']

The del statement is good to use when you know the index of the value you want to

remove from the list. The remove() method is useful when you know the value you want

to remove from the list.
/

Sorting the Values in a List with the sort() Method

Lists of number values or lists of strings can be sorted with the sort() method. For

example, enter the following into the interactive shell:

>>> spam = [2, 5, 3.14, 1, -7]

>>> spam.sort()

>>> spam

[-7, 1, 2, 3.14, 5]

>>> spam = ['ants', 'cats', 'dogs', 'badgers', 'elephants']

>>> spam.sort()

>>> spam

['ants', 'badgers', 'cats', 'dogs', 'elephants']

You can also pass True for the reverse keyword argument to have sort() sort the values in

reverse order. Enter the following into the interactive shell:

>>> spam.sort(reverse=True)

>>> spam

['elephants', 'dogs', 'cats', 'badgers', 'ants']

There are three things you should note about the sort() method. First, the sort() method

 spam =

spam.sort().

Second, you cannot sort lists that have both number values and string values in them,

 r the following into the

interactive shell and notice the TypeError error:

>>> spam = [1, 3, 2, 4, 'Alice', 'Bob']

>>> spam.sort()

Traceback (most recent call last):

File "<pyshell#70>", line 1, in <module>

spam.sort()

TypeError: '<' not supported between instances of 'str' and 'int'

Third, sort()

strings. This means uppercase letters come before lowercase letters. Therefore, the

lowercase a is sorted so that it comes after the uppercase Z. For an example, enter the

following into the interactive shell:

>>> spam = ['Alice', 'ants', 'Bob', 'badgers', 'Carol', 'cats']

>>> spam.sort()
/

>>> spam

['Alice', 'Bob', 'Carol', 'ants', 'badgers', 'cats']

If you need to sort the values in regular alphabetical order, pass str.lower for the key

keyword argument in the sort() method call.
>>> spam = ['a', 'z', 'A', 'Z']

>>> spam.sort(key=str.lower)

>>> spam

['a', 'A', 'z', 'Z']

This causes the sort() function to treat all the items in the list as if they were lowercase

without actually changing the values in the list.

Reversing the Values in a List with the reverse() Method

If you need to quickly reverse the order of the items in a list, you can call the reverse() list

method. Enter the following into the interactive shell:

>>> spam = ['cat', 'dog', 'moose']

>>> spam.reverse()

>>> spam

['moose', 'dog', 'cat']

EXCEPTIONS TO INDENTATION RULES IN PYTHON

In most cases, the amount of indentation for a line of code tells Python what block it is in. There are

some exceptions to this rule, however. For example, lists can actually span several lines in the

source code file. The indentation of these lines does not matter; Python knows that the list is not

finished until it sees the ending square bracket. For example, you can have code that looks like this:

spam = ['apples',

'oranges',

'bananas',

'cats']

print(spam)

Of course, practically speaking, most people use behavior to make their lists look pretty

and readable, like the messages list in the Magic 8 Ball program. /

You can also split up a single instruction across multiple lines using the \ line continuation

character at the end. Think of \

indentation on the line after a \ line continuation is not significant. For example, the following is

valid Python code:

print('Four score and seven ' + \

'years ago...')

These tricks are useful when you want to rearrange long lines of Python code to be a bit more

readable.

Like the sort() list method, reverse()

spam.reverse(), instead of spam = spam.reverse().

EXAMPLE PROGRAM: MAGIC 8 BALL WITH A LIST

Ball program. Instead of several lines of nearly identical elif statements, you can create a

single list that the code works with. Open a new file editor window and enter the

following code. Save it as magic8Ball2.py.

import random

messages = ['It is certain',

'It is decidedly so', 'Yes

definitely',

'Reply hazy try again',

'Ask again later',

'Concentrate and ask again',

'My reply is no',

'Outlook not so good',

'Very doubtful']

print(messages[random.randint(0, len(messages) - 1)])

You can view the execution of this program at https://autbor.com/magic8ball2/.

 as the previous

magic8Ball.py program.

Notice the expression you use as the index for messages: random.randint (0, len(messages) -

1). This produces a random number to use for the index, regardless of the size of messages. /

 0 and the value of len(messages) - 1. The

benefit of this approach is that you can easily add and remove strings to the messages list

without changing other lines of code. If you later update your code, there will be fewer

lines you have to change and fewer chances for you to introduce bugs.

SEQUENCE DATA TYPES

strings and lists are actually similar if you consider a string

characters. The Python sequence data types include lists, strings, range objects returned

by range() Tuple Data on page 96). Many of the

things you can do with lists can also be done with strings and other values of sequence

types: indexing; slicing; and using them with for loops, with len(), and with the in and not

in operators. To see this, enter the following into the interactive shell:

>>> name = 'Zophie'

>>> name[0]

'Z'

>>> name[-2]

'i'

>>> name[0:4]

'Zoph'

>>> 'Zo' in name

True

>>> 'z' in name

False

>>> 'p' not in name

False

>>> for i in name:

... print('* * * ' + i + ' * * *')

* * * Z * * *

* * * o * * *

* * * p * * *

* * * h * * *

* * * i * * *

* * * e * * *

Mutable and Immutable Data Types
But lists and strings are different in an important way. A list value is a mutable data type: /

it can have values added, removed, or changed. However, a string is immutable: it cannot

be changed. Trying to reassign a single character in a string results in a TypeError error, as

you can see by entering the following into the interactive shell:

>>> name = 'Zophie a cat'

>>> name[7] = 'the'

Traceback (most recent call last):

File "<pyshell#50>", line 1, in <module>

name[7] = 'the'

TypeError: 'str' object does not support item assignment

 new

string by copying from parts of the old string. Enter the following into the interactive

shell:

>>> name = 'Zophie a cat'

>>> newName = name[0:7] + 'the' + name[8:12]

>>> name

'Zophie a cat'

>>> newName

'Zophie the cat'

We used [0:7] and [8:12] e

that the original 'Zophie a cat' string is not modified, because strings are immutable.

Although a list value is mutable, the second line in the following code does not

modify the list eggs:

>>> eggs = [1, 2, 3]

>>> eggs = [4, 5, 6]

>>> eggs

[4, 5, 6]

The list value in eggs

list value ([4, 5, 6]) is overwriting the old list value ([1, 2, 3]). This is depicted in Figure 4-

2.

If you wanted to actually modify the original list in eggs to contain [4, 5, 6], you would

have to do something like this:

/

/

>>> eggs = [1, 2, 3]

>>> del eggs[2]

>>> del eggs[1]

>>> del eggs[0]

>>> eggs.append(4)

>>> eggs.append(5)

>>> eggs.append(6)

>>> eggs

[4, 5, 6]

Figure 4-2: When eggs = [4, 5, 6] is executed, the contents of eggs are replaced with a new list value.

In the first example, the list value that eggs ends up with is the same list value it

started with. just that this list has been changed, rather than overwritten. Figure 4-3

depicts the seven changes made by the first seven lines in the previous interactive shell

example.

Figure 4-3: The del statement and the append() method modify the same list value in place.

Changing a value of a mutable data type (like what the del statement and append()

 value

is not replaced with a new list value.

Mutable versus immutable types may seem like a meaningless distinction, but

functions with mutable arguments versus immutable arguments. But first, find out

about the tuple data type, which is an immutable form of the list data type.

The Tuple Data Type

The tuple data type is almost identical to the list data type, except in two ways. First,

tuples are typed with parentheses, (and), instead of square brackets, [and]. For

example, enter the following into the interactive shell:

>>> eggs = ('hello', 42, 0.5)

>>> eggs[0]

'hello'

>>> eggs[1:3]

(42, 0.5)

>>> len(eggs)

3

But the main way that tuples are different from lists is that tuples, like strings, are

immutable. Tuples cannot have their values modified, appended, or removed. Enter the

following into the interactive shell, and look at the TypeError error message:

>>> eggs = ('hello', 42, 0.5)

>>> eggs[1] = 99

Traceback (most recent call last):

File "<pyshell#5>", line 1, in <module>

eggs[1] = 99

TypeError: 'tuple' object does not support item assignment

If you have only one value in your tuple, you can indicate this by placing a trailing

comma after the value inside the parentheses. Otherwise,

typed a value inside regular parentheses. The comma is what lets Python know this is a

tuple value. (Unlike some other programming languages, fine to have a trailing

comma after the last item in a list or tuple in Python.) Enter the following type() function

calls into the interactive shell to see the distinction:

/

>>> type(('hello',))

<class 'tuple'>

>>> type(('hello'))

<class 'str'>

You tend for

that sequence of values to change. If you need an ordered sequence of values that never

changes, use a tuple. A second benefit of using tuples instead of lists is that, because they

 ent some

optimizations that make code using tuples slightly faster than code using lists.

Converting Types with the list() and tuple() Functions

Just like how str(42) will return '42', the string representation of the integer 42, the

functions list() and tuple() will return list and tuple versions of the values passed to them.

Enter the following into the interactive shell, and notice that the return value is of a

different data type than the value passed:

>>> tuple(['cat', 'dog', 5])

('cat', 'dog', 5)

>>> list(('cat', 'dog', 5))

['cat', 'dog', 5]

>>> list('hello')

['h', 'e', 'l', 'l', 'o']

Converting a tuple to a list is handy if you need a mutable version of a tuple value.

REFERENCES

ever, this explanation is

a simplification of what Python is actually doing. Technically, variables are storing

references to the computer memory locations where the values are stored. Enter the

following into the interactive shell:

>>> spam = 42

>>> cheese = spam

>>> spam = 100

>>> spam

100

>>> cheese

42
/

When you assign 42 to the spam variable, you are actually creating the 42 value in the

 reference to it in the spam variable. When you copy

the value in spam and assign it to the variable cheese, you are actually copying the

reference. Both the spam and cheese variables refer to the 42

memory. When you later change the value in spam to 100

 100 value and storing a reference to it in

spam cheese. Integers are

immutable spam variable is actually making it

refer to a completely different value in memory.

 mutable.

Here is some code that will make this distinction easier to understand. Enter this into the

interactive shell:

>>> spam = [0, 1, 2, 3, 4, 5]

>>> cheese = spam # The reference is being copied, not the list.

>>> cheese[1] = 'Hello!' # This changes the list value.

>>> spam

[0, 'Hello!', 2, 3, 4, 5]

>>> cheese # The cheese variable refers to the same list.

[0, 'Hello!', 2, 3, 4, 5]

This might look odd to you. The code touched only the cheese list, but it seems that

both the cheese and spam lists have changed.

When you create the list , you assign a reference to it in the spam variable. But the

next line copies only the list reference in spam to cheese, not the list value itself. This

means the values stored in spam and cheese now both refer to the same list. There is only

one underlying list because the list itself was never actually copied. So when you modify

the first element of cheese , you are modifying the same list that spam refers to.

Remember that variables are like boxes that contain values. The previous figures in

actually contain lists they contain references to lists. (These references will have ID

numbers that Python uses internally, but you can ignore them.) Using boxes as a

metaphor for variables, Figure 4-4 shows what happens when a list is assigned to the

spam variable.

/

/

Figure 4-4: spam = [0, 1, 2, 3, 4, 5] stores a reference to a list, not the actual list.

Then, in Figure 4-5, the reference in spam is copied to cheese. Only a new reference

was created and stored in cheese, not a new list. Note how both references refer to the

same list.

Figure 4-5: spam = cheese copies the reference, not the list.

When you alter the list that cheese refers to, the list that spam refers to is also changed,

because both cheese and spam refer to the same list. You can see this in Figure 4-6.

Figure 4-6: cheese[1] = 'Hello!' modifies the list that both variables refer to.

Although Python variables technically contain references to values, people often

casually say that the variable contains the value.

Identity and the id() Function

You may be wondering why the weird behavior with mutable lists in the previous section

 id()

function to understand this. All values in Python have a unique identity that can be

obtained with the id() function. Enter the following into the interactive shell:

>>> id('Howdy') # The returned number will be different on your machine.

44491136

When Python runs id('Howdy'), it creates the 'Howdy'

The numeric memory address where the string is stored is returned by the id() function.

Python picks this address based on which memory bytes happen to be free on your

ou run this code.

Like all strings, 'Howdy'

string in a variable, a new string object is being made at a different place in memory, and

the variable refers to this new string. For example, enter the following into the interactive

shell and see how the identity of the string referred to by bacon changes:

>>> bacon = 'Hello'

>>> id(bacon)

44491136

>>> bacon += ' world!' # A new string is made from 'Hello' and ' world!'.

>>> id(bacon) # bacon now refers to a completely different string.

44609712

However, lists can be modified because they are mutable objects. The append() method

 We call this

 in-place.

>>> eggs = ['cat', 'dog'] # This creates a new list.

>>> id(eggs)

35152584

>>> eggs.append('moose') # append() modifies the list "in place".

>>> id(eggs) # eggs still refers to the same list as before.

35152584

>>> eggs = ['bat', 'rat', 'cow'] # This creates a new list, which has a new

identity.
/

>>> id(eggs) # eggs now refers to a completely different list.

44409800

If two variables refer to the same list (like spam and cheese in the previous section) and

the list value itself changes, both variables are affected because they both refer to the

same list. The append(), extend(), remove(), sort(), reverse(), and other list methods modify

their lists in place.

automatic garbage collector deletes any values not being referred to by any

works, which is a good thing: manual memory management in other programming

languages is a common source of bugs.

Passing References

References are particularly important for understanding how arguments get passed to

functions. When a function is called, the values of the arguments are copied to the

 ll describe in the next chapter),

this means a copy of the reference is used for the parameter. To see the consequences of

this, open a new file editor window, enter the following code, and save it as

passingReference.py:

def eggs(someParameter):

someParameter.append('Hello')

spam = [1, 2, 3]

eggs(spam)

print(spam)

Notice that when eggs() is called, a return value is not used to assign a new value to

spam. Instead, it modifies the list in place, directly. When run, this program produces the

following output:

[1, 2, 3, 'Hello']

Even though spam and someParameter contain separate references, they both refer to the

same list. This is why the append('Hello') method call inside the function affects the list

even after the function call has returned.

Keep this behavior in mind: forgetting that Python handles list and dictionary

variables this way can lead to confusing bugs.

/

Although passing around references is often the handiest way to deal with lists and

dictionaries, if the function modifies the list or dictionary that is passed, you may not

want these changes in the original list or dictionary value. For this, Python provides a

module named copy that provides both the copy() and deepcopy() functions. The first of

these, copy.copy(), can be used to make a duplicate copy of a mutable value like a list or

dictionary, not just a copy of a reference. Enter the following into the interactive shell:

>>> import copy

>>> spam = ['A', 'B', 'C', 'D']

>>> id(spam)

44684232

>>> cheese = copy.copy(spam)

>>> id(cheese) # cheese is a different list with different identity.

44685832

>>> cheese[1] = 42

>>> spam

['A', 'B', 'C', 'D']

>>> cheese

['A', 42, 'C', 'D']

Now the spam and cheese variables refer to separate lists, which is why only the list in

cheese is modified when you assign 42 at index 1. As you can see in Figure 4-7, the

reference ID numbers are no longer the same for both variables because the variables

refer to independent lists.

Figure 4-7: cheese = copy.copy(spam) creates a second list that can be modified independently of the first.

If the list you need to copy contains lists, then use the copy.deepcopy() function instead

of copy.copy(). The deepcopy() function will copy these inner lists as well.
/

/

A SHORT PROGRAM: CONWAY S GAME OF LIFE

cellular automata: a set of rules governing the

behavior of a field made up of discrete cells. In practice, it creates a pretty animation to

look at. You can draw out each step on graph paper, using the squares as cells. A filled-in

or

three living neighbors, it continues to live on the next step. If a dead square has exactly

three living neighbors, it comes alive on the next step. Every other square dies or

remains dead on the next step. You can see an example of the progression of steps in

Figure 4-8.

Figure 4-

Even though the rules are simple, there are many surprising behaviors that emerge.

Life can move, self-replicate, or even mimic CPUs. But at

the foundation of all of this complex, advanced behavior is a rather simple program.

We can use a list of lists to represent the two-dimensional field. The inner list

represents each column of squares and stores a '#' hash string for living squares and a ' '

space string for dead squares. Type the following source code into the file editor, and

save the file as conway.py.

works; just enter it and follow along with comments and explanations provided here as

close as you can:

Conway's Game of Life

import random, time, copy

WIDTH = 60

HEIGHT = 20

Create a list of list for the cells:

nextCells = []

for x in range(WIDTH):

column = [] # Create a new column.

for y in range(HEIGHT):

if random.randint(0, 1) == 0:

column.append('#') # Add a living cell.

/

else:

column.append(' ') # Add a dead cell.

nextCells.append(column) # nextCells is a list of column lists.

while True: # Main program loop.

print('\n\n\n\n\n') # Separate each step with newlines.

currentCells = copy.deepcopy(nextCells)

Print currentCells on the screen:

for y in range(HEIGHT):

for x in range(WIDTH):

print(currentCells[x][y], end='') # Print the # or space.

print() # Print a newline at the end of the row.

Calculate the next step's cells based on current step's cells:

for x in range(WIDTH):

for y in range(HEIGHT):

Get neighboring coordinates:

`% WIDTH` ensures leftCoord is always between 0 and WIDTH - 1

leftCoord = (x - 1) % WIDTH

rightCoord = (x + 1) % WIDTH

aboveCoord = (y - 1) % HEIGHT

belowCoord = (y + 1) % HEIGHT

Count number of living neighbors:

numNeighbors = 0

if currentCells[leftCoord][aboveCoord] == '#':

numNeighbors += 1 # Top-left neighbor is alive.

if currentCells[x][aboveCoord] == '#':

numNeighbors += 1 # Top neighbor is alive.

if currentCells[rightCoord][aboveCoord] == '#':

numNeighbors += 1 # Top-right neighbor is alive.

if currentCells[leftCoord][y] == '#':

numNeighbors += 1 # Left neighbor is alive.

if currentCells[rightCoord][y] == '#':

numNeighbors += 1 # Right neighbor is alive.

if currentCells[leftCoord][belowCoord] == '#':

numNeighbors += 1 # Bottom-left neighbor is alive.

if currentCells[x][belowCoord] == '#':

numNeighbors += 1 # Bottom neighbor is alive.

if currentCells[rightCoord][belowCoord] == '#':

numNeighbors += 1 # Bottom-right neighbor is alive.

Set cell based on Conway's Game of Life rules:

if currentCells[x][y] == '#' and (numNeighbors == 2 or

numNeighbors == 3):

Living cells with 2 or 3 neighbors stay alive:

nextCells[x][y] = '#'

elif currentCells[x][y] == ' ' and numNeighbors == 3:

Dead cells with 3 neighbors become alive:

nextCells[x][y] = '#'

else:

Everything else dies or stays dead:

nextCells[x][y] = ' '

time.sleep(1) # Add a 1-second pause to reduce flickering.

Conway's Game of Life

import random, time, copy

WIDTH = 60

HEIGHT = 20

First we import modules that conta random.randint(),

time.sleep(), and copy.deepcopy() functions.

Create a list of list for the cells:

nextCells = []

for x in range(WIDTH):

column = [] # Create a new column.

for y in range(HEIGHT):

if random.randint(0, 1) == 0:

column.append('#') # Add a living cell.

else:

column.append(' ') # Add a dead cell.

nextCells.append(column) # nextCells is a list of column lists.

The very first step of our cellular automata will be completely random. We need to

create a list of lists data structure to store the '#' and ' ' strings that represent a living or

dead cell, and their place in the list of lists reflects their position on the screen. The inner
/

lists each represent a column of cells. The random.randint(0, 1) call gives an even 50/50

chance between the cell starting off alive or dead.

We put this list of lists in a variable called nextCells, because the first step in our main

program loop will be to copy nextCells into currentCells. For our list of lists data structure,

the x-coordinates start at 0 on the left and increase going right, while the y-coordinates

start at 0 at the top and increase going down. So nextCells[0][0] will represent the cell at

the top left of the screen, while nextCells[1][0] represents the cell to the right of that cell

and nextCells[0][1] represents the cell beneath it.

while True: # Main program loop.

print('\n\n\n\n\n') # Separate each step with newlines.

currentCells = copy.deepcopy(nextCells)

Each iteration of our main program loop will be a single step of our cellular automata.

 nextCells to currentCells, print currentCells on the screen, and then

use the cells in currentCells to calculate the cells in nextCells.

Print currentCells on the screen:

for y in range(HEIGHT):

for x in range(WIDTH):

print(currentCells[x][y], end='') # Print the # or space.

print() # Print a newline at the end of the row.

These nested for loops ensure that we print a full row of cells to the screen, followed

by a newline character at the end of the row. We repeat this for each row in nextCells.

Calculate the next step's cells based on current step's cells:

for x in range(WIDTH):

for y in range(HEIGHT):

Get neighboring coordinates:

`% WIDTH` ensures leftCoord is always between 0 and WIDTH - 1

leftCoord = (x - 1) % WIDTH

rightCoord = (x + 1) % WIDTH

aboveCoord = (y - 1) % HEIGHT

belowCoord = (y + 1) % HEIGHT

Next, we need to use two nested for loops to calculate each cell for the next step. The

living or dead state of the cell depends on the neighbors, so first calculate the index

of the cells to the left, right, above, and below the current x- and y-coordinates.

/

The % mod o

leftmost column 0 would be 0 - 1 or -1. To

index, 59, we calculate (0 - 1) % WIDTH. Since WIDTH is 60, this expression evaluates to

59. This mod-wraparound technique works for the right, above, and below neighbors as

well.

Count number of living neighbors:

numNeighbors = 0

if currentCells[leftCoord][aboveCoord] == '#':

numNeighbors += 1 # Top-left neighbor is alive.

if currentCells[x][aboveCoord] == '#':

numNeighbors += 1 # Top neighbor is alive.

if currentCells[rightCoord][aboveCoord] == '#':

numNeighbors += 1 # Top-right neighbor is alive.

if currentCells[leftCoord][y] == '#':

numNeighbors += 1 # Left neighbor is alive.

if currentCells[rightCoord][y] == '#':

numNeighbors += 1 # Right neighbor is alive.

if currentCells[leftCoord][belowCoord] == '#':

numNeighbors += 1 # Bottom-left neighbor is alive.

if currentCells[x][belowCoord] == '#':

numNeighbors += 1 # Bottom neighbor is alive.

if currentCells[rightCoord][belowCoord] == '#':

numNeighbors += 1 # Bottom-right neighbor is alive.

To decide if the cell at nextCells[x][y] should be living or dead, we need to count the

number of living neighbors currentCells[x][y] has. This series of if statements checks each

of the eight neighbors of this cell, and adds 1 to numNeighbors for each living one.

Set cell based on Conway's Game of Life rules:

if currentCells[x][y] == '#' and (numNeighbors == 2 or

numNeighbors == 3):

Living cells with 2 or 3 neighbors stay alive:

nextCells[x][y] = '#'

elif currentCells[x][y] == ' ' and numNeighbors == 3:

Dead cells with 3 neighbors become alive:

nextCells[x][y] = '#'

else:

Everything else dies or stays dead:

/

nextCells[x][y] = ' '

time.sleep(1) # Add a 1-second pause to reduce flickering.

Now that we know the number of living neighbors for the cell at currentCells[x][y], we

can set nextCells[x][y] to either '#' or ' '. After we loop over every possible x- and y-

coordinate, the program takes a 1-second pause by calling time.sleep(1). Then the program

execution goes back to the start of the main program loop to continue with the next step.

Several patterns have been dis

 -8, results in a pattern

line in our conway.py program:

if random.randint(0, 1) == 0:

with this line:

if (x, y) in ((1, 0), (2, 1), (0, 2), (1, 2), (2, 2)):

You

Life by searching the web. And you can find other short, text-based Python programs

like this one at https://github.com/asweigart/pythonstdiogames.

SUMMARY

Lists are useful data types since they allow you to write code that works on a modifiable

number of values in a single variable. Later in this book, you will see programs using

lists to do things that would be difficult or impossible to do without them.

Lists are a sequence data type that is mutable, meaning that their contents can change.

Tuples and strings, though also sequence data types, are immutable and cannot be

changed. A variable that contains a tuple or string value can be overwritten with a new

tuple or string value, but this is not the same thing as modifying the existing value in

place like, say, the append() or remove() methods do on lists.

Variables do not store list values directly; they store references to lists. This is an

important distinction when you are copying variables or passing lists as arguments in

function calls. Because the value that is being copied is the list reference, be aware that

any changes you make to the list might impact another variable in your program. You

can use copy() or deepcopy() if you want to make changes to a list in one variable without

modifying the original list.

PRACTICE QUESTIONS /

1. What is []?

2. How would you assign the value 'hello' as the third value in a list stored in a variable

named spam? (Assume spam contains [2, 4, 6, 8, 10].)

 spam contains the list ['a', 'b', 'c', 'd'].

3. What does spam[int(int('3' * 2) // 11)] evaluate to?

4. What does spam[-1] evaluate to?

5. What does spam[:2] evaluate to?

For the following three questions, say bacon contains the list [3.14, 'cat', 11, 'cat',

True].

6. What does bacon.index('cat') evaluate to?

7. What does bacon.append(99) make the list value in bacon look like?

8. What does bacon.remove('cat') make the list value in bacon look like?

9. What are the operators for list concatenation and list replication?

10. What is the difference between the append() and insert() list methods?

11. What are two ways to remove values from a list?

12. Name a few ways that list values are similar to string values.

13. What is the difference between lists and tuples?

14. How do you type the tuple value that has just the integer value 42 in it?

15. How can you get the tuple form of a list value? How can you get the list form of a

tuple value?

16. Variables directly. What do they

contain instead?

17. What is the difference between copy.copy() and copy.deepcopy()?

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

Comma Code

Say you have a list value like this:

spam = ['apples', 'bananas', 'tofu', 'cats']

/

Write a function that takes a list value as an argument and returns a string with all the

items separated by a comma and a space, with and inserted before the last item. For

example, passing the previous spam list to the function would return 'apples, bananas, tofu,

and cats'. But your function should be able to work with any list value passed to it. Be sure

to test the case where an empty list [] is passed to your function.

Coin Flip Streaks

T T T H H H H T T.

probably end up with alternating head- which

write down a streak of six heads or six tails in a row, even though it is highly likely to

happen in truly random coin flips. Humans are predictably bad at being random.

Write a program to find out how often a streak of six heads or a streak of six tails

comes up in a randomly generated list of heads and tails. Your program breaks up the

experiment into two parts: the first part generates a list of randomly selected 'heads' and

'tails' values, and the second part checks if there is a streak in it. Put all of this code in a

loop that repeats the experiment 10,000 times so we can find out what percentage of the

coin flips contains a streak of six heads or tails in a row. As a hint, the function call

random.randint(0, 1) will return a 0 value 50% of the time and a 1 value the other 50% of the

time.

You can start with the following template:

import random

numberOfStreaks = 0

for experimentNumber in range(10000):

Code that creates a list of 100 'heads' or 'tails' values.

Code that checks if there is a streak of 6 heads or tails in a row.

print('Chance of streak: %s%%' % (numberOfStreaks / 100))

Of course, this is only an estimate, but 10,000 is a decent sample size. Some

knowledge of mathematics could give you the exact answer and save you the trouble of

writing a program, but programmers are notoriously bad at math.

Character Picture Grid

Say you have a list of lists where each value in the inner lists is a one-character string,

like this:
/

grid = [['.', '.', '.', '.', '.', '.'],

['.', 'O', 'O', '.', '.', '.'],

['O', 'O', 'O', 'O', '.', '.'],

['O', 'O', 'O', 'O', 'O', '.'],

['.', 'O', 'O', 'O', 'O', 'O'],

['O', 'O', 'O', 'O', 'O', '.'],

['O', 'O', 'O', 'O', '.', '.'],

['.', 'O', 'O', '.', '.', '.'],

['.', '.', '.', '.', '.', '.']]

Think of grid[x][y] as being the character at the x- and y-

drawn with text characters. The (0, 0) origin is in the upper-left corner, the x-coordinates

increase going right, and the y-coordinates increase going down.

Copy the previous grid value, and write code that uses it to print the image.

..OO.OO..

.OOOOOOO.

.OOOOOOO.

..OOOOO..

...OOO...

....O....

Hint: You will need to use a loop in a loop in order to print grid[0][0], then grid[1][0],

then grid[2][0], and so on, up to grid[8][0]. This will finish the first row, so then print a

newline. Then your program should print grid[0][1], then grid[1][1], then grid[2][1], and so

on. The last thing your program will print is grid[8][5].

Also, remember to pass the end keyword argument to print()

newline printed automatically after each print() call.

/

/

DICTIONARIES AND STRUCTURING DATA

In this chapter, I will cover the dictionary data type, which provides a flexible way to

access and organize data. Then, combining dictionaries with your knowledge of lists

learn how to create a data structure to model a tic-tac-

toe board.
/

THE DICTIONARY DATA TYPE

Like a list, a dictionary is a mutable collection of many values. But unlike indexes for

lists, indexes for dictionaries can use many different data types, not just integers. Indexes

for dictionaries are called keys, and a key with its associated value is called a key-value

pair.

In code, a dictionary is typed with braces, {}. Enter the following into the interactive

shell:

>>> myCat = {'size': 'fat', 'color': 'gray', 'disposition': 'loud'}

This assigns a dictionary to the myCat 'size', 'color',

and 'disposition'. The values for these keys are 'fat', 'gray', and 'loud', respectively. You can

access these values through their keys:

>>> myCat['size']

'fat'

>>> 'My cat has ' + myCat['color'] + ' fur.'

'My cat has gray fur.'

Dictionaries can still use integer values as keys, just like lists use integers for indexes,

but they do not have to start at 0 and can be any number.

>>> spam = {12345: 'Luggage Combination', 42: 'The Answer'}

Dictionaries vs. Lists

Unlike lists, items in dictionaries are unordered. The first item in a list named spam

would be spam[0]

matters for determining whether two lists are the same, it does not matter in what order

the key-value pairs are typed in a dictionary. Enter the following into the interactive

shell:

>>> spam = ['cats', 'dogs', 'moose']

>>> bacon = ['dogs', 'moose', 'cats']

>>> spam == bacon

False

>>> eggs = {'name': 'Zophie', 'species': 'cat', 'age': '8'}

>>> ham = {'species': 'cat', 'age': '8', 'name': 'Zophie'}

>>> eggs == ham

True

/

Trying to access a key that does not exist in a dictionary will result in a KeyError error

message, much like a -of- IndexError error message. Enter the following

into the interactive shell, and notice the error message that shows up because there is no

'color' key:

>>> spam = {'name': 'Zophie', 'age': 7}

>>> spam['color']

Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>

spam['color']

KeyError: 'color'

Though dictionaries are not ordered, the fact that you can have arbitrary values for the

keys allows you to organize your data in powerful ways. Say you wanted your program

 You can use a dictionary with the names as

keys and the birthdays as values. Open a new file editor window and enter the following

code. Save it as birthdays.py.

birthdays = {'Alice': 'Apr 1', 'Bob': 'Dec 12', 'Carol': 'Mar 4'}

while True:

print('Enter a name: (blank to quit)')

name = input()

if name == '':

break

if name in birthdays:

print(birthdays[name] + ' is the birthday of ' + name)

else:

print('I do not have birthday information for ' + name)

print('What is their birthday?')

bday = input()

birthdays[name] = bday

print('Birthday database updated.')

You can view the execution of this program at https://autbor.com/bdaydb. You create

an initial dictionary and store it in birthdays . You can see if the entered name exists as a

key in the dictionary with the in keyword , just as you did for lists. If the name is in the

dictionary, you access the associated value using square brackets ; if not, you can add /

it using the same square bracket syntax combined with the assignment operator .

When you run this program, it will look like this:

Enter a name: (blank to quit)

Alice

Apr 1 is the birthday of Alice

Enter a name: (blank to quit)

Eve

I do not have birthday information for Eve

What is their birthday?

Dec 5

Birthday database updated.

Enter a name: (blank to quit)

Eve

Dec 5 is the birthday of Eve

Enter a name: (blank to quit)

Of course, all the data you enter in this program is forgotten when the program

to save data to files on the hard drive in Chapter 9.

ORDERED DICTIONARIES IN PYTHON 3.7

-value pair, dictionaries in Python 3.7 and

later will remember the insertion order of their key-value pairs if you create a sequence value from

them. For example, notice the order of items in the lists made from the eggs and ham dictionaries

matches the order in which they were entered:

>>> eggs = {'name': 'Zophie', 'species': 'cat', 'age': '8'}

>>> list(eggs)

['name', 'species', 'age']

>>> ham = {'species': 'cat', 'age': '8', 'name': 'Zophie'}

>>> list(ham)

['species', 'age', 'name']

eggs[0] or ham[2]. You

>>> spam = {}

>>> spam['first key'] = 'value'

>>> spam['second key'] = 'value'

>>> spam['third key'] = 'value'

>>> list(spam)

['first key', 'third key', 'second key']

-

-value pairs when I run this code in Python 3.5:

/

The keys(), values(), and items() Methods

There are three dictionary methods that will return list-like values of the

keys, values, or both keys and values: keys(), values(), and items(). The values returned by

these methods are not true lists: they cannot be modified and do not have an append()

method. But these data types (dict_keys, dict_values, and dict_items, respectively) can be

used in for loops. To see how these methods work, enter the following into the interactive

shell:

>>> spam = {'color': 'red', 'age': 42}

>>> for v in spam.values():

... print(v)

red

42

Here, a for loop iterates over each of the values in the spam dictionary. A for loop can

also iterate over the keys or both keys and values:

>>> for k in spam.keys():

... print(k)

color

age

>>> for i in spam.items():

... print(i)

('color', 'red')

('age', 42)

When you use the keys(), values(), and items() methods, a for loop can iterate over the

keys, values, or key-value pairs in a dictionary, respectively. Notice that the values in

thedict_items value returned by the items() method are tuples of the key and value.

If you want a true list from one of these methods, pass its list-like return value to the

list() function. Enter the following into the interactive shell:

>>> spam = {'color': 'red', 'age': 42}

>>> spam.keys()

dict_keys(['color', 'age'])

>>> list(spam.keys())

['color', 'age']

The list(spam.keys()) line takes the dict_keys value returned from keys() and passes it to

list(), which then returns a list value of ['color', 'age'].

You can also use the multiple assignment trick in a for loop to assign the key and

value to separate variables. Enter the following into the interactive shell:

>>> spam = {'color': 'red', 'age': 42}

>>> for k, v in spam.items():

... print('Key: ' + k + ' Value: ' + str(v))

Key: age Value: 42

Key: color Value: red

/

Checking Whether a Key or Value Exists in a Dictionary

Recall from the previous chapter that the in and not in operators can check whether a

value exists in a list. You can also use these operators to see whether a certain key or

value exists in a dictionary. Enter the following into the interactive shell:

>>> spam = {'name': 'Zophie', 'age': 7}

>>> 'name' in spam.keys()

True

>>> 'Zophie' in spam.values()

True

>>> 'color' in spam.keys()

False

>>> 'color' not in spam.keys()

True

>>> 'color' in spam

False

In the previous example, notice that 'color' in spam is essentially a shorter version of

writing 'color' in spam.keys(). This is always the case: if you ever want to check whether a /

 in (or not in) keyword

with the dictionary value itself.

The get() Method

tedious to check whether a key exists in a dictionary before accessing that

value. Fortunately, dictionaries have a get() method that takes two arguments: the key of

the value to retrieve and a fallback value to return if that key does not exist.

Enter the following into the interactive shell:

>>> picnicItems = {'apples': 5, 'cups': 2}

>>> 'I am bringing ' + str(picnicItems.get('cups', 0)) + ' cups.'

'I am bringing 2 cups.'

>>> 'I am bringing ' + str(picnicItems.get('eggs', 0)) + ' eggs.'

'I am bringing 0 eggs.'

Because there is no 'eggs' key in the picnicItems dictionary, the default value 0 is

returned by the get() method. Without using get(), the code would have caused an error

message, such as in the following example:

>>> picnicItems = {'apples': 5, 'cups': 2}

>>> 'I am bringing ' + str(picnicItems['eggs']) + ' eggs.'

Traceback (most recent call last):

File "<pyshell#34>", line 1, in <module>

'I am bringing ' + str(picnicItems['eggs']) + ' eggs.'

KeyError: 'eggs'

The setdefault() Method

ionary for a certain key only if that key does not

already have a value. The code looks something like this:

spam = {'name': 'Pooka', 'age': 5}

if 'color' not in spam:

spam['color'] = 'black'

The setdefault() method offers a way to do this in one line of code. The first argument

passed to the method is the key to check for, and the second argument is the value to set

at that key if the key does not exist. If the key does exist, the setdefault() method returns
/

the value. Enter the following into the interactive shell:

>>> spam = {'name': 'Pooka', 'age': 5}

>>> spam.setdefault('color', 'black')

'black'

>>> spam

{'color': 'black', 'age': 5, 'name': 'Pooka'}

>>> spam.setdefault('color', 'white')

'black'

>>> spam

{'color': 'black', 'age': 5, 'name': 'Pooka'}

The first time setdefault() is called, the dictionary in spam changes to {'color': 'black', 'age':

5, 'name': 'Pooka'}. The method returns the value 'black' because this is now the value set for

the key 'color'. When spam.setdefault('color', 'white') is called next, the value for that key is not

changed to 'white', because spam already has a key named 'color'.

The setdefault() method is a nice shortcut to ensure that a key exists. Here is a short

program that counts the number of occurrences of each letter in a string. Open the file

editor window and enter the following code, saving it as characterCount.py:

message = 'It was a bright cold day in April, and the clocks were striking

thirteen.'

count = {}

for character in message:

count.setdefault(character, 0)

count[character] = count[character] + 1

print(count)

You can view the execution of this program at https://autbor.com/setdefault. The

program loops over each character in the message

each character appears. The setdefault() method call ensures that the key is in the count

dictionary (with a default value of 0 KeyError error when

count[character] = count[character] + 1 is executed . When you run this program, the output

will look like this:

{' ': 13, ',': 1, '.': 1, 'A': 1, 'I': 1, 'a': 4, 'c': 3, 'b': 1, 'e': 5, 'd': 3, 'g': 2,

'i': 6, 'h': 3, 'k': 2, 'l': 3, 'o': 2, 'n': 4, 'p': 1, 's': 3, 'r': 5, 't': 6, 'w': 2, 'y': 1}
/

From the output, you can see that the lowercase letter c appears 3 times, the space

character appears 13 times, and the uppercase letter A appears 1 time. This program will

work no matter what string is inside the message variable, even if the string is millions of

characters long!

PRETTY PRINTING

If you import the pprint

 pprint() and

pformat()

want a cleaner display of the items in a dictionary than what print() provides. Modify the

previous characterCount.py program and save it as prettyCharacterCount.py.

import pprint

message = 'It was a bright cold day in April, and the clocks were striking

thirteen.'

count = {}
for character in message:

count.setdefault(character, 0)

count[character] = count[character] + 1

pprint.pprint(count)

You can view the execution of this program at https://autbor.com/pprint/. This time,

when the program is run, the output looks much cleaner, with the keys sorted.

{' ': 13,

',': 1,

'.': 1,

'A': 1,

'I': 1,

--snip--

't': 6,

'w': 2,

'y': 1}

The pprint.pprint() function is especially helpful when the dictionary itself contains

nested lists or dictionaries.

If you want to obtain the prettified text as a string value instead of displaying it on the

screen, call pprint.pformat() instead. These two lines are equivalent to each other:
/

/

pprint.pprint(someDictionaryValue)

print(pprint.pformat(someDictionaryValue))

USING DATA STRUCTURES TO MODEL REAL-WORLD THINGS

Even before the internet, it was possible to play a game of chess with someone on the

other side of the world. Each player would set up a chessboard at their home and then

take turns mailing a postcard to each other describing each move. To do this, the players

needed a way to unambiguously describe the state of the board and their moves.

In algebraic chess notation, the spaces on the chessboard are identified by a number

and letter coordinate, as in Figure 5-1.

Figure 5-1: The coordinates of a chessboard in algebraic chess notation

The chess pieces are identified by letters: K for king, Q for queen, R for rook, B for

bishop, and N for knight. Describing a move uses the letter of the piece and the

coordinates of its destination. A pair of these moves describes what happens in a single

turn (with white going first); for instance, the notation 2. Nf3 Nc6 indicates that white

moved a knight to f3 and black moved a knight to c6 on the second turn of the game.

unambiguously describe a game of chess without needing to be in front of a chessboard.

a

physical chess set if you have a good memory: you can just read the mailed chess moves

and update boards you have in your imagination.

/

Computers have good memories. A program on a modern computer can easily store

billions of strings like '2. Nf3 Nc6'. This is how computers can play chess without having a

physical chessboard. They model data to represent a chessboard, and you can write code

to work with this model.

This is where lists and dictionaries can come in. For example, the dictionary {'1h':

'bking', '6c': 'wqueen', '2g': 'bbishop', '5h': 'bqueen', '3e': 'wking'} could represent the chess board in

Figure 5-2.

Figure 5-2: A chess board modeled by the dictionary '1h': 'bking', '6c': 'wqueen', '2g': 'bbishop', '5h':

'bqueen', '3e': 'wking'}

a little simpler than chess: tic-tac-

toe.

A Tic-Tac-Toe Board

A tic-tac-toe board looks like a large hash symbol (#) with nine slots that can each

contain an X, an O, or a blank. To represent the board with a dictionary, you can assign

each slot a string-value key, as shown in Figure 5-3.

Figure 5-3: The slots of a tic-tac-toe board with their corresponding keys

You can use string values to represent in each slot on the board: 'X', 'O', or ' ' (a

You can use a dictionary of values for

this. The string value with the key 'top-R' can represent the top-right corner, the string

value with the key 'low-L' can represent the bottom-left corner, the string value with the

key 'mid-M' can represent the middle, and so on.

This dictionary is a data structure that represents a tic-tac-toe board. Store this board- as-

a-dictionary in a variable named theBoard. Open a new file editor window, and enter the

following source code, saving it as ticTacToe.py:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',

'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',

'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

The data structure stored in the theBoard variable represents the tic-tac-toe board in

Figure 5-4.

Figure 5-4: An empty tic-tac-toe board

/

you could represent that board with this dictionary:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',

'mid-L': ' ', 'mid-M': 'X', 'mid-R': ' ',

'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

The data structure in theBoard now represents the tic-tac-toe board in Figure 5-5.

Figure 5-5: The first move

A board where player O has won by placing Os across the top might look like this:

theBoard = {'top-L': 'O', 'top-M': 'O', 'top-R': 'O',

'mid-L': 'X', 'mid-M': 'X', 'mid-R': ' ',

'low-L': ' ', 'low-M': ' ', 'low-R': 'X'}

The data structure in theBoard now represents the tic-tac-toe board in Figure 5-6.

Figure 5-6: Player O wins.

Of course, the player sees only what is printed to the screen, not the contents of

following addition to ticTacToe.py (new code is in bold):

/

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ',

'mid-L': ' ', 'mid-M': ' ', 'mid-R': ' ',

'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

def printBoard(board):

print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])

print('-+-+-')

print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])

print('-+-+-')

print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])

printBoard(theBoard)

You can view the execution of this program at https://autbor.com/tictactoe1/. When

you run this program, printBoard() will print out a blank tic-tac-toe board.

| |

-+-+-

| |

-+-+-

| |

The printBoard() function can handle any tic-tac-toe data structure you pass it. Try

changing the code to the following:

theBoard = {'top-L': 'O', 'top-M': 'O', 'top-R': 'O', 'mid-L': 'X', 'mid-M':

'X', 'mid-R': ' ', 'low-L': ' ', 'low-M': ' ', 'low-R': 'X'}

def printBoard(board):

print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])

print('-+-+-')

print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])

print('-+-+-')

print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])

printBoard(theBoard)

You can view the execution of this program at https://autbor.com/tictactoe2/. Now

when you run this program, the new board will be printed to the screen.

O|O|O

-+-+-

X|X|

/

-+-+-

| |X

Because you created a data structure to represent a tic-tac-toe board and wrote code in

printBoard() -

tac-toe board. You could have organized your data structure differently (for example,

using keys like 'TOP-LEFT' instead of 'top-L'), but as long as the code works with your data

structures, you will have a correctly working program.

For example, the printBoard() function expects the tic-tac-toe data structure to be a

dictionary with keys for all nine slots. If the dictionary you passed was missing, say, the

'mid-L' key, your program would no longer work.

O|O|O

-+-+-

Traceback (most recent call last):

File "ticTacToe.py", line 10, in <module>

printBoard(theBoard)

File "ticTacToe.py", line 6, in printBoard

print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])

KeyError: 'mid-L'

ticTacToe.py program to look like this:

theBoard = {'top-L': ' ', 'top-M': ' ', 'top-R': ' ', 'mid-L': ' ', 'mid-M':

' ', 'mid-R': ' ', 'low-L': ' ', 'low-M': ' ', 'low-R': ' '}

def printBoard(board):

print(board['top-L'] + '|' + board['top-M'] + '|' + board['top-R'])

print('-+-+-')

print(board['mid-L'] + '|' + board['mid-M'] + '|' + board['mid-R'])

print('-+-+-')

print(board['low-L'] + '|' + board['low-M'] + '|' + board['low-R'])

turn = 'X'

for i in range(9):

printBoard(theBoard)

print('Turn for ' + turn + '. Move on which space?')

move = input()

theBoard[move] = turn

if turn == 'X':

/

turn = 'O'

else:

turn = 'X'

printBoard(theBoard)

You can view the execution of this program at https://autbor.com/tictactoe3/. The

new code prints out the board at the start of each new turn

move , updates the game board accordingly , and then swaps the active player

before moving on to the next turn.

When you run this program, it will look something like this:

| |

-+-+-

| |

-+-+-

| |

Turn for X. Move on which space?

mid-M

| |

-+-+-

|X|

-+-+-

| |

--snip--

O|O|X

-+-+-

X|X|O

-+-+-

O| |X

Turn for X. Move on which space?

low-M

O|O|X

-+-+-

X|X|O

-+-+-

O|X|X

/

NOTE

If you are curious, the source code for a complete tic-tac-toe program is described in

the resources available from https://nostarch.com/automatestuff2/.

-tac-toe game

player has won

Nested Dictionaries and Lists

Modeling a tic-tac-toe board was fairly simple: the board needed only a single dictionary

value with nine key-value pairs. As you model more complicated things, you may find

you need dictionaries and lists that contain other dictionaries and lists. Lists are useful to

contain an ordered series of values, and dictionaries are useful for associating keys with

values. For example, a program that uses a dictionary that contains other

dictionaries of what items guests are bringing to a picnic. The totalBrought() function can

read this data structure and calculate the total number of an item being brought by all the

guests.

allGuests = {'Alice': {'apples': 5, 'pretzels': 12},

'Bob': {'ham sandwiches': 3, 'apples': 2},

'Carol': {'cups': 3, 'apple pies': 1}}

def totalBrought(guests, item):

numBrought = 0

for k, v in guests.items():

numBrought = numBrought + v.get(item, 0)

return numBrought

print('Number of things being brought:')

print(' - Apples ' + str(totalBrought(allGuests, 'apples')))

print(' - Cups ' + str(totalBrought(allGuests, 'cups')))

print(' - Cakes ' + str(totalBrought(allGuests, 'cakes')))

print(' - Ham Sandwiches ' + str(totalBrought(allGuests, 'ham sandwiches')))

print(' - Apple Pies ' + str(totalBrought(allGuests, 'apple pies')))

You can view the execution of this program at https://autbor.com/guestpicnic/. Inside

the totalBrought() function, the for loop iterates over the key-value pairs in guests . Inside

the loop, the string of the name is assigned to k, and the dictionary of picnic items

bringing is assigned to v. If the item parameter exists as a key in this dictionary,

/

its value (the quantity) is added to numBrought . If it does not exist as a key, the get()

method returns 0 to be added to numBrought.

The output of this program looks like this:

Number of things being brought:

- Apples 7

- Cups 3

- Cakes 0

- Ham Sandwiches 3

- Apple Pies 1

with writing a program to do it. But realize that this same totalBrought() function could

easily handle a dictionary that contains thousands of guests, each bringing thousands of

different picnic items. Then having this information in a data structure along with the

totalBrought() function would save you a lot of time!

You can model things with data structures in whatever way you like, as long as the

rest of the code in your program can work with the data model correctly. When you first

gain more experience, you may come up with more efficient models, but the important

thing is that the data mo needs.

SUMMARY

You learned all about dictionaries in this chapter. Lists and dictionaries are values that

can contain multiple values, including other lists and dictionaries. Dictionaries are useful

because you can map one item (the key) to another (the value), as opposed to lists, which

simply contain a series of values in order. Values inside a dictionary are accessed using

square brackets just as with lists. Instead of an integer index, dictionaries can have keys

of a va

values into data structures, you can create representations of real-world objects. You saw

an example of this with a tic-tac-toe board.

PRACTICE QUESTIONS

1. What does the code for an empty dictionary look like?

2. What does a dictionary value with a key 'foo' and a value 42 look like?

3. What is the main difference between a dictionary and a list?

4. What happens if you try to access spam['foo'] if spam is {'bar': 100}?

5. If a dictionary is stored in spam, what is the difference between the expressions 'cat' in

spam and 'cat' in spam.keys()?

6. If a dictionary is stored in spam, what is the difference between the expressions 'cat' in

spam and 'cat' in spam.values()?

7. What is a shortcut for the following code?

if 'color' not in spam:

spam['color'] = 'black'

8. values?

/

MANIPULATING STRINGS

Text is one of the most common forms of data your programs will handle. You already

know how to concatenate two string values together with the + operator, but you can do

much more than that. You can extract partial strings from string values, add or remove

spacing, convert letters to lowercase or uppercase, and check that strings are formatted

correctly. You can even write Python code to access the clipboard for copying and

pasting text.

programming projects: a simple clipboard that stores multiple strings of text and a

program to automate the boring chore of formatting pieces of text.

WORKING WITH STRINGS

look at some of the ways Python lets you write, print, and access strings in your

code.

String Literals

Typing string values in Python code is fairly straightforward: they begin and end with a

single quote. But then how can you use a quote inside a string? Typing 'That is Alice's cat.'

 Alice, and the rest (s cat.') is

invalid Python code. Fortunately, there are multiple ways to type strings.

Double Quotes

Strings can begin and end with double quotes, just as they do with single quotes. One

benefit of using double quotes is that the string can have a single quote character in it.

Enter the following into the interactive shell:

>>> spam = "That is Alice's cat."

Since the string begins with a double quote, Python knows that the single quote is

part of the string and not marking the end of the string. However, if you need to use both

single quotes and double quotes in the string, need to use escape characters.

Escape Characters

An escape character lets you use characters that are otherwise impossible to put into a

string. An escape character consists of a backslash (\) followed by the character you want

to add to the string. (Despite consisting of two characters, it is commonly referred to as a

singular escape character.) For example, the escape character for a single quote is \'. You

/

/

quotes and double quotes inside your strings, respectively.

Table 6-1 lists the escape characters you can use.

Table 6-1: Escape Characters

Escape character Prints as

\' Single quote

\" Double quote

\t Tab

\n Newline (line break)

\\ Backslash

Enter the following into the interactive shell:

>>> print("Hello there!\nHow are you?\nI\'m doing fine.")

Hello there!

How are you?

I'm doing fine.

Raw Strings

You can place an r before the beginning quotation mark of a string to make it a raw

string. A raw string completely ignores all escape characters and prints any backslash

that appears in the string. For example, enter the following into the interactive shell:

>>> print(r'That is Carol\'s cat.')

That is Carol\'s cat.

Because this is a raw string, Python considers the backslash as part of the string and

not as the start of an escape character. Raw strings are helpful if you are typing string

values that contain many backslashes, such as the strings used for Windows file paths

like r'C:\Users\Al\Desktop' or regular expressions described in the next chapter.

Multiline Strings with Triple Quotes

While you can use the \n escape character to put a newline into a string, it is often easier

to use multiline strings. A multiline string in Python begins and ends with either three

not

apply to lines inside a multiline string.

/

Open the file editor and write the following:

print('''Dear Alice,

Eve's cat has been arrested for catnapping, cat burglary, and extortion.

Sincerely,

Bob''')

Save this program as catnapping.py and run it. The output will look like this:

Dear Alice,

Eve's cat has been arrested for catnapping, cat burglary, and extortion.

Sincerely,

Bob

Notice that the single quote character in Eve's does not need to be escaped. Escaping

single and double quotes is optional in multiline strings. The following print() call would

print('Dear Alice,\n\nEve\'s cat has been arrested for catnapping, cat

burglary, and extortion.\n\nSincerely,\nBob')

Multiline Comments

While the hash character (#) marks the beginning of a comment for the rest of the line, a

multiline string is often used for comments that span multiple lines. The following is

perfectly valid Python code:

"""This is a test Python program.

Written by Al Sweigart al@inventwithpython.com

This program was designed for Python 3, not Python 2.

"""

def spam():

"""This is a multiline comment to help

explain what the spam() function does."""

print('Hello!')

mailto:al@inventwithpython.com

/

Indexing and Slicing Strings

Strings use indexes and slices the same way lists do. You can think of the string 'Hello,

world!' as a list and each character in the string as an item with a corresponding index.

' H e l l o , w o r l d ! '

0 1 2 3 4 5 6 7 8 9 10 11 12

The space and exclamation point are included in the character count, so 'Hello, world!'

is 13 characters long, from H at index 0 to ! at index 12.

Enter the following into the interactive shell:

>>> spam = 'Hello, world!'

>>> spam[0]

'H'

>>> spam[4]

'o'

>>> spam[-1]

'!'

>>> spam[0:5]

'Hello'

>>> spam[:5]

'Hello'

>>> spam[7:]

'world!'

specify a range from one index to another, the starting index is included and the ending

spam is 'Hello, world!', spam[0:5] is 'Hello'. The substring you get

from spam[0:5] will include everything from spam[0] to spam[4], leaving out the comma at

index 5 and the space at index 6. This is similar to how range(5) will cause a for loop to

iterate up to, but not including, 5.

Note that slicing a string does not modify the original string. You can capture a slice

from one variable in a separate variable. Try entering the following into the interactive

shell:

>>> spam = 'Hello, world!'

>>> fizz = spam[0:5]

>>> fizz

'Hello'

/

By slicing and storing the resulting substring in another variable, you can have both

the whole string and the substring handy for quick, easy access.

The in and not in Operators with Strings

The in and not in operators can be used with strings just like with list values. An

expression with two strings joined using in or not in will evaluate to a Boolean True or

False. Enter the following into the interactive shell:

>>> 'Hello' in 'Hello, World'

True

>>> 'Hello' in 'Hello'

True

>>> 'HELLO' in 'Hello, World'

False

>>> '' in 'spam'

True

>>> 'cats' not in 'cats and dogs'

False

These expressions test whether the first string (the exact string, case-sensitive) can be

found within the second string.

PUTTING STRINGS INSIDE OTHER STRINGS

been using the + operator and string concatenation to do this:

>>> name = 'Al'

>>> age = 4000

>>> 'Hello, my name is ' + name + '. I am ' + str(age) + ' years old.'

'Hello, my name is Al. I am 4000 years old.'

However, this requires a lot of tedious typing. A simpler approach is to use string

interpolation, in which the %s operator inside the string acts as a marker to be replaced

by values following the string. One benefit of string interpolation is that str()

to be called to convert values to strings. Enter the following into the interactive shell:

>>> name = 'Al'

>>> age = 4000

>>> 'My name is %s. I am %s years old.' % (name, age)

'My name is Al. I am 4000 years old.'

/

Python 3.6 introduced f-strings, which is similar to string interpolation except that

braces are used instead of %s, with the expressions placed directly inside the braces. Like

raw strings, f-strings have an f prefix before the starting quotation mark. Enter the

following into the interactive shell:

>>> name = 'Al'

>>> age = 4000

>>> f'My name is {name}. Next year I will be {age + 1}.'

'My name is Al. Next year I will be 4001.'

Remember to include the f prefix; otherwise, the braces and their contents will be a

part of the string value:

>>> 'My name is {name}. Next year I will be {age + 1}.'

'My name is {name}. Next year I will be {age + 1}.'

USEFUL STRING METHODS

Several string methods analyze strings or create transformed string values. This section

The upper(), lower(), isupper(), and islower() Methods

The upper() and lower() string methods return a new string where all the letters in the

original string have been converted to uppercase or lowercase, respectively. Nonletter

characters in the string remain unchanged. Enter the following into the interactive shell:

>>> spam = 'Hello, world!'

>>> spam = spam.upper()

>>> spam

'HELLO, WORLD!'

>>> spam = spam.lower()

>>> spam

'hello, world!'

Note that these methods do not change the string itself but return new string values. If

you want to change the original string, you have to call upper() or lower() on the string and

then assign the new string to the variable where the original was stored. This is why you

must use spam = spam.upper() to change the string in spam instead of simply spam.upper().

/

(This is just like if a variable eggs contains the value 10. Writing eggs + 3 does not change

the value of eggs, but eggs = eggs + 3 does.)

The upper() and lower() methods are helpful if you need to make a case-insensitive

comparison. For example, the strings 'great' and 'GREat' are not equal to each other. But in

the following small program, it does not matter whether the user types Great, GREAT, or

grEAT, because the string is first converted to lowercase.

print('How are you?')

feeling = input()

if feeling.lower() == 'great':

print('I feel great too.')

else:

print('I hope the rest of your day is good.')

When you run this program, the question is displayed, and entering a variation on

great, such as GREat, will still give the output I feel great too. Adding code to your program

to handle variations or mistakes in user input, such as inconsistent capitalization, will

make your programs easier to use and less likely to fail.

How are you?

GREat

I feel great too.

You can view the execution of this program at https://autbor.com/convertlowercase/.

The isupper() and islower() methods will return a Boolean True value if the string has at

least one letter and all the letters are uppercase or lowercase, respectively. Otherwise, the

method returns False. Enter the following into the interactive shell, and notice what each

method call returns:

>>> spam = 'Hello, world!'

>>> spam.islower()

False

>>> spam.isupper()

False

>>> 'HELLO'.isupper()

True

>>> 'abc12345'.islower()

True

>>> '12345'.islower()

False

/

>>> '12345'.isupper()

False

Since the upper() and lower() string methods themselves return strings, you can call

string methods on those returned string values as well. Expressions that do this will look

like a chain of method calls. Enter the following into the interactive shell:

>>> 'Hello'.upper()

'HELLO'

>>> 'Hello'.upper().lower()

'hello'

>>> 'Hello'.upper().lower().upper()

'HELLO'

>>> 'HELLO'.lower()

'hello'

>>> 'HELLO'.lower().islower()

True

The isX() Methods

Along with islower() and isupper(), there are several other string methods that have names

beginning with the word is. These methods return a Boolean value that describes the

nature of the string. Here are some common isX string methods:

isalpha() Returns True

isalnum() Returns True if the string consists only of letters and numbers and is not

blank

isdecimal() Returns True if the string consists only of numeric characters and is not

blank

isspace() Returns True if the string consists only of spaces, tabs, and newlines and is

not blank

istitle() Returns True if the string consists only of words that begin with an uppercase

letter followed by only lowercase letters

Enter the following into the interactive shell:

>>> 'hello'.isalpha()

True

>>> 'hello123'.isalpha()

False

/

>>> 'hello123'.isalnum()

True

>>> 'hello'.isalnum()

True

>>> '123'.isdecimal()

True

>>> ' '.isspace()

True

>>> 'This Is Title Case'.istitle()

True

>>> 'This Is Title Case 123'.istitle()

True

>>> 'This Is not Title Case'.istitle()

False

>>> 'This Is NOT Title Case Either'.istitle()

False

The isX() string methods are helpful when you need to validate user input. For

example, the following program repeatedly asks users for their age and a password until

they provide valid input. Open a new file editor window and enter this program, saving it

as validateInput.py:

while True:

print('Enter your age:')

age = input()

if age.isdecimal():

break

print('Please enter a number for your age.')

while True:

print('Select a new password (letters and numbers only):')

password = input()

if password.isalnum():

break

print('Passwords can only have letters and numbers.')

In the first while loop, we ask the user for their age and store their input in age. If age is

a valid (decimal) value, we break out of this first while loop and move on to the second,

which asks for a password. Otherwise, we inform the user that they need to enter a

number and again ask them to enter their age. In the second while loop, we ask for a

/

password, and break out of the loop if the input was

to

be alphanumeric and again ask them to enter a password.

When run, the progr

Enter your age:

forty two

Please enter a number for your age.

Enter your age:

42

Select a new password (letters and numbers only):

secr3t!

Passwords can only have letters and numbers.

Select a new password (letters and numbers only):

secr3t

You can view the execution of this program at https://autbor.com/validateinput/.

Calling isdecimal() and isalnum() stored

in those variables are decimal or not, alphanumeric or not. Here, these tests help us reject

the input forty two but accept 42, and reject secr3t! but accept secr3t.

The startswith() and endswith() Methods

The startswith() and endswith() methods return True if the string value they are called on

begins or ends (respectively) with the string passed to the method; otherwise, they return

False. Enter the following into the interactive shell:

>>> 'Hello, world!'.startswith('Hello')

True

>>> 'Hello, world!'.endswith('world!')

True

>>> 'abc123'.startswith('abcdef')

False

>>> 'abc123'.endswith('12')

False

>>> 'Hello, world!'.startswith('Hello, world!')

True

>>> 'Hello, world!'.endswith('Hello, world!')

True

/

These methods are useful alternatives to the == equals operator if you need to check

only whether the first or last part of the string, rather than the whole thing, is equal to

another string.

The join() and split() Methods

The join() method is useful when you have a list of strings that need to be joined together

into a single string value. The join() method is called on a string, gets passed a list of

strings, and returns a string. The returned string is the concatenation of each string in the

passed-in list. For example, enter the following into the interactive shell:

>>> ', '.join(['cats', 'rats', 'bats'])

'cats, rats, bats'

>>> ' '.join(['My', 'name', 'is', 'Simon'])

'My name is Simon'

>>> 'ABC'.join(['My', 'name', 'is', 'Simon'])

'MyABCnameABCisABCSimon'

Notice that the string join() calls on is inserted between each string of the list

argument. For example, when join(['cats', 'rats', 'bats']) is called on the ', ' string, the returned

string is 'cats, rats, bats'.

Remember that join() is called on a string value and is passed a list value. easy to

accidentally call it the other way around.) The split() method does the opposite: called

on a string value and returns a list of strings. Enter the following into the interactive

shell:

>>> 'My name is Simon'.split()

['My', 'name', 'is', 'Simon']

By default, the string 'My name is Simon' is split wherever whitespace characters such as

the space, tab, or newline characters are found. These whitespace characters are not

included in the strings in the returned list. You can pass a delimiter string to the split()

method to specify a different string to split upon. For example, enter the following into

the interactive shell:

>>> 'MyABCnameABCisABCSimon'.split('ABC')

['My', 'name', 'is', 'Simon']

>>> 'My name is Simon'.split('m')

['My na', 'e is Si', 'on']

/

A common use of split() is to split a multiline string along the newline characters.

Enter the following into the interactive shell:

>>> spam = '''Dear Alice,

How have you been? I am fine.

There is a container in the fridge

that is labeled "Milk Experiment."

Please do not drink it.

Sincerely,

Bob'''

>>> spam.split('\n')

['Dear Alice,', 'How have you been? I am fine.', 'There is a container in the

fridge', 'that is labeled "Milk Experiment."', '', 'Please do not drink it.',

'Sincerely,', 'Bob']

Passing split() the argument '\n' lets us split the multiline string stored in spam along the

newlines and return a list in which each item corresponds to one line of the string.

Splitting Strings with the partition() Method

The partition() string method can split a string into the text before and after a separator

string. This method searches the string it is called on for the separator string it is passed,

substrings. Enter the following into the interactive shell:

>>> 'Hello, world!'.partition('w')

('Hello, ', 'w', 'orld!')

>>> 'Hello, world!'.partition('world')

('Hello, ', 'world', '!')

If the separator string you pass to partition() occurs multiple times in the string that

partition() calls on, the method splits the string only on the first occurrence:

>>> 'Hello, world!'.partition('o')

('Hell', 'o', ', world!')

If the

entire string, and the other two strings will be empty:

>>> 'Hello, world!'.partition('XYZ')

('Hello, world!', '', '')

/

You can use the multiple assignment trick to assign the three returned strings to three

variables:

>>> before, sep, after = 'Hello, world!'.partition(' ')

>>> before

'Hello,'

>>> after

'world!'

The partition() method is useful for splitting a string whenever you need the parts

before, including, and after a particular separator string.

Justifying Text with the rjust(), ljust(), and center() Methods

The rjust() and ljust() string methods return a padded version of the string they are called

on, with spaces inserted to justify the text. The first argument to both methods is an

integer length for the justified string. Enter the following into the interactive shell:

>>> 'Hello'.rjust(10)

' Hello'

>>> 'Hello'.rjust(20)

' Hello'

>>> 'Hello, World'.rjust(20)

' Hello, World'

>>> 'Hello'.ljust(10)

'Hello '

'Hello'.rjust(10) says that we want to right-justify 'Hello' in a string of total length 10.

'Hello' is five characters, so five spaces will be added to its left, giving us a string of 10

characters with 'Hello' justified right.

An optional second argument to rjust() and ljust() will specify a fill character other than

a space character. Enter the following into the interactive shell:

>>> 'Hello'.rjust(20, '*')

'***************Hello'

>>> 'Hello'.ljust(20,'-')

'Hello '

The center() string method works like ljust() and rjust() but centers the text rather than

justifying it to the left or right. Enter the following into the interactive shell:

/

>>> 'Hello'.center(20)

' Hello '

>>> 'Hello'.center(20,'=')

'=======Hello========'

These methods are especially useful when you need to print tabular data that has

correct spacing. Open a new file editor window and enter the following code, saving it as

picnicTable.py:

def printPicnic(itemsDict, leftWidth, rightWidth):

print('PICNIC ITEMS'.center(leftWidth + rightWidth, '-'))

for k, v in itemsDict.items():

print(k.ljust(leftWidth, '.') + str(v).rjust(rightWidth))

picnicItems = {'sandwiches': 4, 'apples': 12, 'cups': 4, 'cookies': 8000}

printPicnic(picnicItems, 12, 5)

printPicnic(picnicItems, 20, 6)

You can view the execution of this program at https://autbor.com/picnictable/. In this

program, we define a printPicnic() method that will take in a dictionary of information and

use center(), ljust(), and rjust() to display that information in a neatly aligned table-like

format.

printPicnic() is picnicItems. In picnicItems, we have 4

sandwiches, 12 apples, 4 cups, and 8,000 cookies. We want to organize this information

into two columns, with the name of the item on the left and the quantity on the right.

To do this, we decide how wide we want the left and right columns to be. Along with

ass these values to printPicnic().

The printPicnic() function takes in a dictionary, a leftWidth for the left column of a table,

and a rightWidth for the right column. It prints a title, PICNIC ITEMS, centered above the

table. Then, it loops through the dictionary, printing each key-value pair on a line with

the key justified left and padded by periods, and the value justified right and padded by

spaces.

After defining printPicnic(), we define the dictionary picnicItems and call printPicnic()

twice, passing it different widths for the left and right table columns.

When you run this program, the picnic items are displayed twice. The first time the

left column is 12 characters wide, and the right column is 5 characters wide. The second

time they are 20 and 6 characters wide, respectively.

/

---PICNIC ITEMS--

sandwiches.. 4

apples12

cups 4

cookies 8000

-------PICNIC ITEMS-------

sandwiches 4

apples 12

cups 4

cookies 8000

Using rjust(), ljust(), and center() lets you ensure that strings are neatly aligned, even if

are.

Removing Whitespace with the strip(), rstrip(), and lstrip()
Methods

Sometimes you may want to strip off whitespace characters (space, tab, and newline)

from the left side, right side, or both sides of a string. The strip() string method will return

a new string without any whitespace characters at the beginning or end. The lstrip() and

rstrip() methods will remove whitespace characters from the left and right ends,

respectively. Enter the following into the interactive shell:

>>> spam = ' Hello, World '

>>> spam.strip()

'Hello, World'

>>> spam.lstrip()

'Hello, World '

>>> spam.rstrip()

' Hello, World'

Optionally, a string argument will specify which characters on the ends should be

stripped. Enter the following into the interactive shell:

>>> spam = 'SpamSpamBaconSpamEggsSpamSpam'

>>> spam.strip('ampS')

'BaconSpamEggs'

Passing strip() the argument 'ampS' will tell it to strip occurrences of a, m, p, and capital

S from the ends of the string stored in spam. The order of the characters in the string

/

passed to strip() does not matter: strip('ampS') will do the same thing as strip('mapS') or

strip('Spam').

NUMERIC VALUES OF CHARACTERS WITH THE ORD() AND CHR()
FUNCTIONS

Computers store information as bytes strings of binary numbers, which means we need

to be able to convert text to numbers. Because of this, every text character has a

corresponding numeric value called a Unicode code point. For example, the numeric

code point is 65 for 'A', 52 for '4', and 33 for '!'. You can use the ord() function to get the

code point of a one-character string, and the chr() function to get the one-character string

of an integer code point. Enter the following into the interactive shell:

>>> ord('A')

65

>>> ord('4')

52

>>> ord('!')

33

>>> chr(65)

'A'

These functions are useful when you need to do an ordering or mathematical

operation on characters:

>>> ord('B')

66

>>> ord('A') < ord('B')

True

>>> chr(ord('A'))

'A'

>>> chr(ord('A') + 1)

'B'

There is more to Unicode and code points, but those details are beyond the scope of

2012

or, at

https://youtu.be/sgHbC6udIqc.

COPYING AND PASTING STRINGS WITH THE PYPERCLIP MODULE

/

The pyperclip module has copy() and paste() functions that can send text to and receive text

will make it easy to paste it into an email, word processor, or some other software.

RUNNING PYTHON SCRIPTS OUTSIDE OF MU

So far,

each time you want to run a script. Fortunately, there are shortcuts you can set up to make running

Python scripts easier. The steps are slightly different for Windows, macOS, and Linux, but each is

described in Appendix B. Turn to Appendix B to learn how to run your Python scripts conveniently

and be able to pass command line arguments to them. (You will not be able to pass command line

arguments to your programs using Mu.)

The pyperclip module does not come with Python. To install it, follow the directions

for installing third-party modules in Appendix A. After installing pyperclip, enter the

following into the interactive shell:

>>> import pyperclip

>>> pyperclip.copy('Hello, world!')

>>> pyperclip.paste()

'Hello, world!'

Of course, if something outside of your program changes the clipboard contents, the

paste() function will return it. For example, if I copied this sentence to the clipboard and

then called paste(), it would look like this:

>>> pyperclip.paste()

'For example, if I copied this sentence to the clipboard and then called

paste(), it would look like this:'

PROJECT: MULTI-CLIPBOARD AUTOMATIC MESSAGES

had to do a lot of repetitive typing. Maybe you keep a text document with these phrases

so you can easily copy and paste them using the clipboard. But your clipboard can only

make this process a bit

easier with a program that stores multiple phrases.

Step 1: Program Design and Data Structures

/

You want to be able to run this program with a command line argument that is a short

key phrase for instance, agree or busy. The message associated with that key phrase

will be copied to the clipboard so that the user can paste it into an email. This way, the

user can have long, detailed messages without having to retype them.

THE CHAPTER PROJECTS

book. From here on, each chapter will have projects that

demonstrate the concepts covered in the chapter. The projects are written in a style that takes you

from a blank file editor window to a full, working program. Just like with the interactive shell

ex follow along on your computer!

Open a new file editor window and save the program as mclip.py. You need to start

the program with a #! (shebang) line (see Appendix B) and should also write a comment

that briefly describes the program. Since you want to associate each piece of text with its

key phrase, you can store these as strings in a dictionary. The dictionary will be the data

structure that organizes your key phrases and text. Make your program look like the

following:

#! python3

mclip.py - A multi-clipboard program.

TEXT = {'agree': """Yes, I agree. That sounds fine to me.""",

'busy': """Sorry, can we do this later this week or next week?""",

'upsell': """Would you consider making this a monthly donation?"""}

Step 2: Handle Command Line Arguments

The command line arguments will be stored in the variable sys.argv. (See Appendix B for

more information on how to use command line arguments in your programs.) The first

item in the sys.argv list should

('mclip.py'), and the second item should be the first command line argument. For this

program, this argument is the key phrase of the message you want. Since the command

line argument is mandatory, you display a usage message to the user if they forget to add

it (that is, if the sys.argv list has fewer than two values in it). Make your program look like

the following:

#! python3

mclip.py - A multi-clipboard program.

/

TEXT = {'agree': """Yes, I agree. That sounds fine to me.""",

'busy': """Sorry, can we do this later this week or next week?""",

'upsell': """Would you consider making this a monthly donation?"""}

import sys

if len(sys.argv) < 2:

print('Usage: python mclip.py [keyphrase] - copy phrase text')

sys.exit()

keyphrase = sys.argv[1] # first command line arg is the keyphrase

Step 3: Copy the Right Phrase

Now that the key phrase is stored as a string in the variable keyphrase, you need to see

whether it exists in the TEXT dictionary as a key. If so, you want to copy the value

to the clipboard using pyperclip.copy() pyperclip module, you need

need the keyphrase variable; you could just use

sys.argv[1] everywhere keyphrase is used in this program. But a variable named keyphrase is

much more readable than something cryptic like sys.argv[1].

Make your program look like the following:

#! python3

mclip.py - A multi-clipboard program.

TEXT = {'agree': """Yes, I agree. That sounds fine to me.""",

'busy': """Sorry, can we do this later this week or next week?""",

'upsell': """Would you consider making this a monthly donation?"""}

import sys, pyperclip

if len(sys.argv) < 2:

print('Usage: py mclip.py [keyphrase] - copy phrase text')

sys.exit()

keyphrase = sys.argv[1] # first command line arg is the keyphrase

if keyphrase in TEXT:

pyperclip.copy(TEXT[keyphrase])

print('Text for ' + keyphrase + ' copied to clipboard.')

else:

print('There is no text for ' + keyphrase)

/

This new code looks in the TEXT dictionary for the key phrase. If the key phrase is a

key in the dictionary, we get the value corresponding to that key, copy it to the clipboard,

and print a message saying that we copied the value. Otherwise, we print a message

saying no key phrase with that name.

the complete script. Using the instructions in Appendix B for launching

command line programs easily, you now have a fast way to copy messages to the

clipboard. You will have to modify the TEXT dictionary value in the source whenever

you want to update the program with a new message.

On Windows, you can create a batch file to run this program with the WIN-R Run

window. (For more about batch files, see Appendix B.) Enter the following into the file

editor and save the file as mclip.bat in the C:\Windows folder:

@py.exe C:\path_to_file\mclip.py %*

@pause

With this batch file created, running the multi-clipboard program on Windows is just

a matter of pressing WIN-R and typing mclip key phrase.

PROJECT: ADDING BULLETS TO WIKI MARKUP

When editing a Wikipedia article, you can create a bulleted list by putting each list item

on its own line and placing a star in front. But say you have a really large list that you

want to add bullet points to. You could just type those stars at the beginning of each line,

one by one. Or you could automate this task with a short Python script.

The bulletPointAdder.py script will get the text from the clipboard, add a star and

space to the beginning of each line, and then paste this new text to the clipboard. For

to the clipboard:

Lists of animals

Lists of aquarium life

Lists of biologists by author abbreviation

Lists of cultivars

and then ran the bulletPointAdder.py program, the clipboard would then contain the

following:

* Lists of animals

* Lists of aquarium life

/

* Lists of biologists by author abbreviation

* Lists of cultivars

This star-prefixed text is ready to be pasted into a Wikipedia article as a bulleted list.

Step 1: Copy and Paste from the Clipboard

You want the bulletPointAdder.py program to do the following:

1. Paste text from the clipboard.

2. Do something to it.

3. Copy the new text to the clipboard.

That second step is a little tricky, but steps 1 and 3 are pretty straightforward: they

just involve the pyperclip.copy() and pyperclip.paste() functions. For now, just write the

part of the program that covers steps 1 and 3. Enter the following, saving the program as

bulletPointAdder.py:

#! python3

bulletPointAdder.py - Adds Wikipedia bullet points to the start

of each line of text on the clipboard.

import pyperclip

text = pyperclip.paste()

TODO: Separate lines and add stars.

pyperclip.copy(text)

The TODO comment is a reminder that you should complete this part of the program

eventually. The next step is to actually implement that piece of the program.

Step 2: Separate the Lines of Text and Add the Star

The call to pyperclip.paste() returns all the text on the clipboard as one big string. If we

text would look like this:

'Lists of animals\nLists of aquarium life\nLists of biologists by author

abbreviation\nLists of cultivars'

The \n newline characters in this string cause it to be displayed with multiple lines

when it is printed or pasted from the clipboard. There are many in this one string

/

value. You want to add a star to the start of each of these lines.

You could write code that searches for each \n newline character in the string and then

adds the star just after that. But it would be easier to use the split() method to return a list

of strings, one for each line in the original string, and then add the star to the front of

each string in the list.

Make your program look like the following:

#! python3

bulletPointAdder.py - Adds Wikipedia bullet points to the start

of each line of text on the clipboard.

import pyperclip

text = pyperclip.paste()

Separate lines and add stars.

lines = text.split('\n')

for i in range(len(lines)): # loop through all indexes in the "lines" list

lines[i] = '* ' + lines[i] # add star to each string in "lines" list

pyperclip.copy(text)

We split the text along its newlines to get a list in which each item is one line of the

text. We store the list in lines and then loop through the items in lines. For each line, we

add a star and a space to the start of the line. Now each string in lines begins with a star.

Step 3: Join the Modified Lines

The lines list now contains modified lines that start with stars. But pyperclip.copy() is

expecting a single string value, however, not a list of string values. To make this single

string value, pass lines into the join()

strings. Make your program look like the following:

#! python3

bulletPointAdder.py - Adds Wikipedia bullet points to the start

of each line of text on the clipboard.

import pyperclip

text = pyperclip.paste()

Separate lines and add stars.

/

lines = text.split('\n')

for i in range(len(lines)): # loop through all indexes for "lines" list

lines[i] = '* ' + lines[i] # add star to each string in "lines" list

text = '\n'.join(lines)

pyperclip.copy(text)

When this program is run, it replaces the text on the clipboard with text that has stars

at the start of each line. Now the program is complete, and you can try running it with

text copied to the clipboard.

some other kind of text manipulation, such as removing trailing spaces from the end of

lines or converting text to uppercase or lowercase. Whatever your needs, you can use the

clipboard for input and output.

A SHORT PROGAM: PIG LATIN

Pig Latin is a silly made-up language that alters English words. If a word begins with a

vowel, the word yay is added to the end of it. If a word begins with a consonant or

consonant cluster (like ch or gr), that consonant or cluster is moved to the end of the

word followed by ay.

Enter the English message to translate into Pig Latin:

My name is AL SWEIGART and I am 4,000 years old.

Ymay amenay isyay ALYAY EIGARTSWAY andyay Iyay amyay 4,000 yearsyay oldyay.

This program works by altering a string using the methods introduced in this chapter.

Type the following source code into the file editor, and save the file as pigLat.py:

English to Pig Latin

print('Enter the English message to translate into Pig Latin:')

message = input()

VOWELS = ('a', 'e', 'i', 'o', 'u', 'y')

pigLatin = [] # A list of the words in Pig Latin.

for word in message.split():

Separate the non-letters at the start of this word:

prefixNonLetters = ''

while len(word) > 0 and not word[0].isalpha():

/

prefixNonLetters += word[0]

word = word[1:]

if len(word) == 0:

pigLatin.append(prefixNonLetters)

continue

Separate the non-letters at the end of this word:

suffixNonLetters = ''

while not word[-1].isalpha():

suffixNonLetters += word[-1]

word = word[:-1]

Remember if the word was in uppercase or title case.

wasUpper = word.isupper()

wasTitle = word.istitle()

word = word.lower() # Make the word lowercase for translation.

Separate the consonants at the start of this word:

prefixConsonants = ''

while len(word) > 0 and not word[0] in VOWELS:

prefixConsonants += word[0]

word = word[1:]

Add the Pig Latin ending to the word:

if prefixConsonants != '':

word += prefixConsonants + 'ay'

else:

word += 'yay'

Set the word back to uppercase or title case:

if wasUpper:

word = word.upper()

if wasTitle:

word = word.title()

Add the non-letters back to the start or end of the word.

pigLatin.append(prefixNonLetters + word + suffixNonLetters)

/

Join all the words back together into a single string:

print(' '.join(pigLatin))

English to Pig Latin

print('Enter the English message to translate into Pig Latin:')

message = input()

VOWELS = ('a', 'e', 'i', 'o', 'u', 'y')

First, we ask the user to enter the English text to translate into Pig Latin. Also, we

create a constant that holds every lowercase vowel letter (and y) as a tuple of strings.

This will be used later in our program.

pigLatin variable to store the words as we translate

them into Pig Latin:

pigLatin = [] # A list of the words in Pig Latin.

for word in message.split():

Separate the non-letters at the start of this word:

prefixNonLetters = ''

while len(word) > 0 and not word[0].isalpha():

prefixNonLetters += word[0]

word = word[1:]

if len(word) == 0:

pigLatin.append(prefixNonLetters)

continue

We need each word to be its own string, so we call message.split() to get a list of the

words as separate strings. The string 'My name is AL SWEIGART and I am 4,000 years old.'

would cause split() to return ['My', 'name', 'is', 'AL', 'SWEIGART', 'and', 'I', 'am', '4,000', 'years', 'old.'].

We need to remove any non-letters from the start and end of each word so that strings

like 'old.' translate to 'oldyay.' instead of 'old.yay' -letters to a variable

named prefixNonLetters.

Separate the non-letters at the end of this word:

suffixNonLetters = ''

while not word[-1].isalpha():

suffixNonLetters += word[-1]

word = word[:-1]

/

A loop that calls isalpha() on the first character in the word will determine if we should

remove a character from a word and concatenate it to the end of prefixNonLetters. If the

entire word is made of non-letter characters, like '4,000', we can simply append it to the

pigLatin list and continue to the next word to translate. We also need to save the non-

letters at the end of the word string. This code is similar to the previous loop.

case so we can restore it after translating the word to Pig Latin:

Remember if the word was in uppercase or title case.

wasUpper = word.isupper()

wasTitle = word.istitle()

word = word.lower() # Make the word lowercase for translation.

For the rest of the code in the for word.

To convert a word like sweigart to eigart-sway, we need to remove all of the

consonants from the beginning of word:

Separate the consonants at the start of this word:

prefixConsonants = ''

while len(word) > 0 and not word[0] in VOWELS:

prefixConsonants += word[0]

word = word[1:]

We use a loop similar to the loop that removed the non-letters from the start of word,

except now we are pulling off consonants and storing them to a variable named

prefixConsonants.

If there were any consonants at the start of the word, they are now in prefixConsonants

and we should concatenate that variable and the string 'ay' to the end of word. Otherwise,

we can assume word begins with a vowel and we only need to concatenate 'yay':

Add the Pig Latin ending to the word:

if prefixConsonants != '':

word += prefixConsonants + 'ay'

else:

word += 'yay'

Recall that we set word to its lowercase version with word = word.lower(). If word was

originally in uppercase or title case, this code will convert word back to its original case:

/

Set the word back to uppercase or title case:

if wasUpper:

word = word.upper()

if wasTitle:

word = word.title()

At the end of the for loop, we append the word, along with any non-letter prefix or

suffix it originally had, to the pigLatin list:

Add the non-letters back to the start or end of the word.

pigLatin.append(prefixNonLetters + word + suffixNonLetters)

Join all the words back together into a single string:

print(' '.join(pigLatin))

After this loop finishes, we combine the list of strings into a single string by calling

the join() method. This single string is passed to print() to display our Pig Latin on the

screen.

You can find other short, text-based Python programs like this one at

https://github.com/asweigart/pythonstdiogames/.

SUMMARY

Text is a common form of data, and Python comes with many helpful string methods to

process the text stored in string values. You will make use of indexing, slicing, and string

methods in almost every Python program you write.

graphical user interfaces with images and colorful text. So far, ng text

with print() and letting the user enter text with input(). However, the user can quickly enter

large amounts of text through the clipboard. This ability provides a useful avenue for

writing programs that manipulate massive amounts of text. These text-based programs

might not have flashy windows or graphics, but they can get a lot of useful work done

quickly.

Another way to manipulate large amounts of text is reading and writing files directly

off the hard drive. learn how to do this with Python in Chapter 9.

That just about covers all the basic concepts of Python programming! continue

to learn new concepts throughout the rest of this book, but you now know enough to start

writing some useful programs that can automate tasks. If y of

far, check

out https://github.com/asweigart/pythonstdiogames/. Try copying the source code for

/

each program by hand, and then make modifications to see how they affect the behavior

of the program. Once you have an understanding of how the program works, try re-

creating the program yourself from scratch. You -create the source code

exactly; just focus on what the program does rather than how it does it.

You might not think you have enough Python knowledge to do things such as

download web pages, update spreadsheets, or send text messages, but t

Python modules come in! These modules, written by other programmers, provide

functions that make it easy for you to do all these things. So learn how to write real

programs to do useful automated tasks.

PRACTICE QUESTIONS

1. What are escape characters?

2. What do the \n and \t escape characters represent?

3. How can you put a \ backslash character in a string?

4. The string value "Howl's Moving Castle"

single quote character in the word Howl's escaped?

5. \n in your string, how can you write a string with newlines in

it?

6. What do the following expressions evaluate to?

'Hello, world!'[1]

'Hello, world!'[0:5]

'Hello, world!'[:5]

'Hello, world!'[3:]

7. What do the following expressions evaluate to?

'Hello'.upper()

'Hello'.upper().isupper()

'Hello'.upper().lower()

8. What do the following expressions evaluate to?

'Remember, remember, the fifth of November.'.split()

'-'.join('There can be only one.'.split())

9. What string methods can you use to right-justify, left-justify, and center a string?

/

10. How can you trim whitespace characters from the beginning or end of a string?

PRACTICE PROJECTS

For practice, write programs that do the following.

Table Printer

Write a function named printTable() that takes a list of lists of strings and displays it in a well-

organized table with each column right-justified. Assume that all the inner lists will contain

the same number of strings. For example, the value could look like this:

tableData = [['apples', 'oranges', 'cherries', 'banana'],

['Alice', 'Bob', 'Carol', 'David'],

['dogs', 'cats', 'moose', 'goose']]

Your printTable() function would print the following:

apples Alice dogs

oranges Bob cats

cherries Carol moose

banana David goose

Hint: your code will first have to find the longest string in each of the inner lists so

that the whole column can be wide enough to fit all the strings. You can store the

maximum width of each column as a list of integers. The printTable() function can begin

with colWidths = [0] * len(tableData), which will create a list containing the same number of 0

values as the number of inner lists in tableData. That way, colWidths[0] can store the width

of the longest string in tableData[0], colWidths[1] can store the width of the longest string in

tableData[1], and so on. You can then find the largest value in the colWidths list to find out

what integer width to pass to the rjust() string method.

Zombie Dice Bots

Programming games are a game genre where instead of playing a game directly, players

Dice

simulator, which allows programmers to practice their skills while making game-playing

AIs. Zombie Dice bots can be simple or incredibly complex, and are great for a class

exercise or an individual programming challenge.

Zombie Dice is a quick, fun dice game from Steve Jackson Games. The players are

zombies trying to eat as many human brains as possible without getting shot three times.

There is a cup of 13 dice with brains, footsteps, and shotgun icons on their faces. The

/

dice icons are colored, and each color has a different likelihood of each event occurring.

Every die has two sides with footsteps, but dice with green icons have more sides with

brains, red-icon dice have more shotguns, and yellow-icon dice have an even split of

turn:

1. Place all 13 dice in the cup. The player randomly draws three dice from the cup and

then rolls them. Players always roll exactly three dice.

2. They set aside and count up any brains (humans whose brains were eaten) and

shotguns (humans who fought back). Accumulating three shotguns automatically

they have between zero and two shotguns, they may continue rolling if they want.

They may also choose to end their turn and collect one point per brain.

3. If the player decides to keep rolling, they must reroll all dice with footsteps.

Remember that the player must always roll three dice; they must draw more dice

out of the cup if they have fewer than three footsteps to roll. A player may keep

rolling dice until either they get three shotguns losing everything or all 13 dice

have been rolled. A player may not reroll only one or two dice, and may not stop mid-

reroll.

4. When someone reaches 13 brains, the rest of the players finish out the round. The

person with the most brains wins. If a tie, the tied players play one last

tiebreaker round.

Zombie Dice has a push-your-luck game mechanic: the more you reroll the dice, the

lose everything. Once a player reaches 13 points, the rest of the players get one more

turn (to potentially catch up) and the game ends. The player with the most points wins.

You can find the complete rules at https://github.com/asweigart/zombiedice/.

Install the zombiedice module with pip by following the instructions in Appendix A.

You can run a demo of the simulator with some pre-made bots by running the following

in the interactive shell:

>>> importzombiedice

>>> zombiedice.demo()

Zombie Dice Visualization is running. Open your browser to http://

localhost:51810 to view it.

Press Ctrl-C to quit.

The program launches your web browser, which will look like Figure 6-1.

/

Figure 6-1: The web GUI for the Zombie Dice simulator

create bots by writing a class with a turn() method, which is called by the

simulator when your turn to roll the dice. Classes are beyond the scope of this

book, so the class code is already set up for you in the myzombie.py program, which is in

the downloadable ZIP file for this book at https://nostarch.com/automatestuff2/. Writing

a method is essentially the same as writing a function, and you can use the turn() code in

the myZombie.py program as a template. Inside this turn() metho

zombiedice.roll() function as often as you want your bot to roll the dice.

import zombiedice

class MyZombie:

def init (self, name):

All zombies must have a name:

self.name = name

def turn(self, gameState):

gameState is a dict with info about the current state of the game.

You can choose to ignore it in your code.

diceRollResults = zombiedice.roll() # first roll

roll() returns a dictionary with keys 'brains', 'shotgun', and

'footsteps' with how many rolls of each type there were.

The 'rolls' key is a list of (color, icon) tuples with the

/

exact roll result information.

Example of a roll() return value:

{'brains': 1, 'footsteps': 1, 'shotgun': 1,

'rolls': [('yellow', 'brains'), ('red', 'footsteps'),

('green', 'shotgun')]}

REPLACE THIS ZOMBIE CODE WITH YOUR OWN:

brains = 0

while diceRollResults is not None:

brains += diceRollResults['brains']

if brains < 2:

diceRollResults = zombiedice.roll() # roll again

else:

break

zombies = (

zombiedice.examples.RandomCoinFlipZombie(name='Random'),

zombiedice.examples.RollsUntilInTheLeadZombie(name='Until Leading'),

zombiedice.examples.MinNumShotgunsThenStopsZombie(name='Stop at 2

Shotguns', minShotguns=2),

zombiedice.examples.MinNumShotgunsThenStopsZombie(name='Stop at 1

Shotgun', minShotguns=1),

MyZombie(name='My Zombie Bot'),

Add any other zombie players here.

)

Uncomment one of the following lines to run in CLI or Web GUI mode:

#zombiedice.runTournament(zombies=zombies, numGames=1000)

zombiedice.runWebGui(zombies=zombies, numGames=1000)

The turn() method takes two parameters: self and gameState. You can ignore these in

your first few zombie bots and consult the online documentation for details later if you

want to learn more. The turn() method should call zombiedice.roll() at least once for the

initial roll. Then, depending on the strategy the bot uses, it can call zombiedice.roll() again

as many times as it wants. In myZombie.py, the turn() method calls zombiedice.roll() twice,

which means the zombie bot will always roll its dice two times per turn regardless of the

results of the roll.

The return value of zombiedice.roll() tells your code the results of the dice roll. It is a

dictionary with four keys. Three of the keys, 'shotgun', 'brains', and 'footsteps', have integer

values of how many dice came up with those icons. The fourth 'rolls' key has a value that

is a list of tuples for each die roll. The tuples contain two strings: the color of the die at

index 0 and the icon rolled at index 1. Look at the code comments in the turn()

definition for an example. If the bot has already rolled three shotguns, then

zombiedice.roll() will return None.

Try writing some of your own bots to play Zombie Dice and see how they compare

against the other bots. Specifically, try to create the following bots:

A bot that, after the first roll, randomly decides if it will continue or stop

A bot that stops rolling after it has rolled two brains

A bot that stops rolling after it has rolled two shotguns

it rolls two shotguns

A bot that stops rolling after it has rolled more shotguns than brains

Run these bots through the simulator and see how they compare to each other. You

can also examine the code of some premade bots at

https://github.com/asweigart/zombiedice/. If you find yourself playing this game in the

 one

always try pressing your luck . . .

PATTERN MATCHING WITH REGULAR

EXPRESSIONS

you live in the United States or Canada, you know it will be three digits, followed by a

hyphen, and then four more digits (and optionally, a three-digit area code at the start).

This is how you, as a human, know a phone number when you see it: 415-555-1234 is a

phone number, but 4,155,551,234 is not.

We also recognize all sorts of other text patterns every day: email addresses have @

symbols in the middle, US social security numbers have nine digits and two hyphens,

website URLs often have periods and forward slashes, news headlines use title case,

social media hashtags begin with # and contain no spaces, and more.

Regular expressions are helpful, but few non-programmers know about them even

though most modern text editors and word processors, such as Microsoft Word or

OpenOffice, have find and find-and-replace features that can search based on regular

expressions. Regular expressions are huge time-savers, not just for software users but

also for programmers. In fact, tech writer Cory Doctorow argues that we should be

teaching regular expressions even before programming:

Knowing [regular expressions] can mean the difference between solving a

problem in 3 steps and solving it in 3, you

forget that the problems you solve with a couple keystrokes can take other

people days of tedious, error-prone work to slog through.1

 without using

regular expressions and then see how to use regular expressions to make the code much

some more powerful features, such as string substitution and creating your own character

extract phone numbers and email addresses from a block of text.

FINDING PATTERNS OF TEXT WITHOUT REGULAR EXPRESSIONS

Say you want to find an American phone number in a string. You know the pattern if

-555-4242.

isPhoneNumber() to check whether a string matches this

pattern, returning either True or False. Open a new file editor tab and enter the following

code; then save the file as isPhoneNumber.py:

def isPhoneNumber(text):

if len(text) != 12:

/

return False

if text[3] != '-':

return False

for i in range(4, 7):

if not text[i].isdecimal():

return False

if text[7] != '-':

return False

for i in range(8, 12):

if not text[i].isdecimal():

return False

return True

print('Is 415-555-4242 a phone number?')

print(isPhoneNumber('415-555-4242'))

print('Is Moshi moshi a phone number?')

print(isPhoneNumber('Moshi moshi'))

When this program is run, the output looks like this:

Is 415-555-4242 a phone number?

True

Is Moshi moshi a phone number?

False

The isPhoneNumber() function has code that does several checks to see whether the

string in text is a valid phone number. If any of these checks fail, the function returns

False. First the code checks that the string is exactly 12 characters . Then it checks that

the area code (that is, the first three characters in text) consists of only numeric characters

. The rest of the function checks that the string follows the pattern of a phone number:

the number must have the first hyphen after the area code , three more numeric

characters , then another hyphen , and finally four more numbers . If the program

execution manages to get past all the checks, it returns True .

Calling isPhoneNumber() with the argument '415-555-4242' will return True. Calling

isPhoneNumber() with 'Moshi moshi' will return False; the first test fails because 'Moshi moshi'

is not 12 characters long.

If you wanted to find a phone number within a larger string, you would have to add

even more code to find the phone number pattern. Replace the last four print() function

calls in isPhoneNumber.py with the following:

/

message = 'Call me at 415-555-1011 tomorrow. 415-555-9999 is my office.'

for i in range(len(message)):

chunk = message[i:i+12]

if isPhoneNumber(chunk):

print('Phone number found: ' + chunk)

print('Done')

When this program is run, the output will look like this:

Phone number found: 415-555-1011

Phone number found: 415-555-9999

Done

On each iteration of the for loop, a new chunk of 12 characters from message is

assigned to the variable chunk . For example, on the first iteration, i is 0, and chunk is

assigned message[0:12] (that is, the string 'Call me at 4'). On the next iteration, i is 1, and

chunk is assigned message[1:13] (the string 'all me at 41'). In other words, on each iteration of

the for loop, chunk takes on the following values:

'Call me at 4'

'all me at 41'

'll me at 415'

'l me at 415-'

. . . and so on.

You pass chunk to isPhoneNumber() to see whether it matches the phone number pattern

, and if so, you print the chunk.

Continue to loop through message, and eventually the 12 characters in chunk will be a

phone number. The loop goes through the entire string, testing each 12-character piece

and printing any chunk it finds that satisfies isPhoneNumber() going

through message, we print Done.

While the string in message is short in this example, it could be millions of characters

long and the program would still run in less than a second. A similar program that finds

phone numbers using regular expressions would also run in less than a second, but

regular expressions make it quicker to write these programs.

FINDING PATTERNS OF TEXT WITH REGULAR EXPRESSIONS

/

NOTE

Most of the examples in this chapter will require the re module, so remember to

import it at the beginning of any script you write or any time you restart Mu.

NameError: name 're' is not defined error message.

The previous phone number finding program works, but it uses a lot of code to do

something limited: the isPhoneNumber() function is 17 lines but can find only one pattern

of phone numbers. What about a phone number formatted like 415.555.4242 or (415) 555-

4242? What if the phone number had an extension, like 415-555-4242 x99? The

isPhoneNumber() function would fail to validate them. You could add yet more code for

these additional patterns, but there is an easier way.

Regular expressions, called regexes for short, are descriptions for a pattern of text.

For example, a \d in a regex stands for a digit character that is, any single numeral from

0 to 9. The regex \d\d\d-\d\d\d-\d\d\d\d is used by Python to match the same text pattern the

previous isPhoneNumber() function did: a string of three numbers, a hyphen, three more

numbers, another hyphen, and four numbers. Any other string would not match the \d\d\d-

\d\d\d-\d\d\d\d regex.

But regular expressions can be much more sophisticated. For example, adding a 3 in

braces ({3}

shorter regex \d{3}-\d{3}-\d{4} also matches the correct phone number format.

Creating Regex Objects

All the regex functions in Python are in the re module. Enter the following into the

interactive shell to import this module:

>>> import re

Passing a string value representing your regular expression to re.compile() returns a

Regex pattern object (or simply, a Regex object).

To create a Regex object that matches the phone number pattern, enter the following

into the interactive shell. (Remember that \d means digit and \d\d\d-\d\d\d-

\d\d\d\d is the regular expression for a phone number pattern.)

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

Now the phoneNumRegex variable contains a Regex object.

Matching Regex Objects

/

NOTE

While I encourage you to enter the example code into the interactive shell, you

should also make use of web-based regular expression testers, which can show you

exactly how a regex matches a piece of text that you enter. I recommend the tester at

https://pythex.org/.

A Regex search() method searches the string it is passed for any matches to the

regex. The search() method will return None if the regex pattern is not found in the string.

If the pattern is found, the search() method returns a Match object, which have a group()

method

groups shortly.) For example, enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

>>> mo = phoneNumRegex.search('My number is 415-555-4242.')

>>> print('Phone number found: ' + mo.group())

Phone number found: 415-555-4242

The mo variable name is just a generic name to use for Match objects. This example

might seem complicated at first, but it is much shorter than the earlier isPhoneNumber.py

program and does the same thing.

Here, we pass our desired pattern to re.compile() and store the resulting Regex object in

phoneNumRegex. Then we call search() on phoneNumRegex and pass search() the string we

want to match for during the search. The result of the search gets stored in the variable

mo. In this example, we know that our pattern will be found in the string, so we know

that a Match object will be returned. Knowing that mo contains a Match object and not the

null value None, we can call group() on mo to return the match. Writing mo.group() inside

our print() function call displays the whole match, 415-555-4242.

Review of Regular Expression Matching

While there are several steps to using regular expressions in Python, each step is fairly

simple.

1. Import the regex module with import re.

2. Create a Regex object with the re.compile() function. (Remember to use a raw string.)

3. Pass the string you want to search into the Regex object search() method. This

returns a Match object.

4. Call the Match group() method to return a string of the actual matched text.

/

MORE PATTERN MATCHING WITH REGULAR EXPRESSIONS

Now that you know the basic steps for creating and finding regular expression objects

-matching

capabilities.

Grouping with Parentheses

Say you want to separate the area code from the rest of the phone number. Adding

parentheses will create groups in the regex: (\d\d\d)-(\d\d\d-\d\d\d\d). Then you can use the

group() match object method to grab the matching text from just one group.

The first set of parentheses in a regex string will be group 1. The second set will be

group 2. By passing the integer 1 or 2 to the group() match object method, you can grab

different parts of the matched text. Passing 0 or nothing to the group() method will return

the entire matched text. Enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d-\d\d\d\d)')

>>> mo = phoneNumRegex.search('My number is 415-555-4242.')

>>> mo.group(1)

'415'

>>> mo.group(2)

'555-4242'

>>> mo.group(0)

'415-555-4242'

>>> mo.group()

'415-555-4242'

If you would like to retrieve all the groups at once, use the groups() method note the

plural form for the name.

>>> mo.groups()

('415', '555-4242')

>>> areaCode, mainNumber = mo.groups()

>>> print(areaCode)

415

>>> print(mainNumber)

555-4242

Since mo.groups() returns a tuple of multiple values, you can use the multiple-

assignment trick to assign each value to a separate variable, as in the previous areaCode,

mainNumber = mo.groups() line.

/

Parentheses have a special meaning in regular expressions, but what do you do if you

need to match a parenthesis in your text? For instance, maybe the phone numbers you are

trying to match have the area code set in parentheses. In this case, you need to escape the

(and) characters with a backslash. Enter the following into the interactive shell:

>>> phoneNumRegex = re.compile(r'(\(\d\d\d\)) (\d\d\d-\d\d\d\d)')

>>> mo = phoneNumRegex.search('My phone number is (415) 555-4242.')

>>> mo.group(1)

'(415)'

>>> mo.group(2)

'555-4242'

The \(and \) escape characters in the raw string passed to re.compile() will match actual

parenthesis characters. In regular expressions, the following characters have special

meanings:

. ^ $ * + ? { } [] \ | ()

If you want to detect these characters as part of your text pattern, you need to escape

them with a backslash:

\. \^ \$ * \+ \? \{ \} \[\] \\ \| \(\)

Make sure to double- \(and \) for

parentheses (and) in a regular expression. If you receive an error message about

unescaped parenthesis for a group, like in this example:

>>> re.compile(r'(\(Parentheses\)')

Traceback (most recent call last):

--snip--

re.error: missing), unterminated subpattern at position 0

The error message tells you that there is an opening parenthesis at index 0 of the r'(\

(Parentheses\)' string that is missing its corresponding closing parenthesis.

Matching Multiple Groups with the Pipe

The | character is called a pipe. You can use it anywhere you want to match one of many

expressions. For example, the regular expression r'Batman|Tina Fey' will match either

'Batman' or 'Tina Fey'.

/

NOTE

You can find all matching occurrences with the findall() method

171.

discussed in

When both Batman and Tina Fey occur in the searched string, the first occurrence of

matching text will be returned as the Match object. Enter the following into the interactive

shell:

>>> heroRegex = re.compile (r'Batman|Tina Fey')

>>> mo1 = heroRegex.search('Batman and Tina Fey')

>>> mo1.group()

'Batman'

>>> mo2 = heroRegex.search('Tina Fey and Batman')

>>> mo2.group()

'Tina Fey'

You can also use the pipe to match one of several patterns as part of your regex. For

example, say you wanted to match any of the strings 'Batman', 'Batmobile', 'Batcopter', and

'Batbat'. Since all these strings start with Bat, it would be nice if you could specify that

prefix only once. This can be done with parentheses. Enter the following into the

interactive shell:

>>> batRegex = re.compile(r'Bat(man|mobile|copter|bat)')

>>> mo = batRegex.search('Batmobile lost a wheel')

>>> mo.group()

'Batmobile'

>>> mo.group(1)

'mobile'

The method call mo.group() returns the full matched text 'Batmobile', while mo.group(1)

returns just the part of the matched text inside the first parentheses group, 'mobile'. By

using the pipe character and grouping parentheses, you can specify several alternative

patterns you would like your regex to match.

If you need to match an actual pipe character, escape it with a backslash, like \|.

Optional Matching with the Question Mark

/

Sometimes there is a pattern that you want to match only optionally. That is, the regex

should find a match regardless of whether that bit of text is there. The ? character flags

the group that precedes it as an optional part of the pattern. For example, enter the

following into the interactive shell:

>>> batRegex = re.compile(r'Bat(wo)?man')

>>> mo1 = batRegex.search('The Adventures of Batman')

>>> mo1.group()

'Batman'

>>> mo2 = batRegex.search('The Adventures of Batwoman')

>>> mo2.group()

'Batwoman'

The (wo)? part of the regular expression means that the pattern wo is an optional

group. The regex will match text that has zero instances or one instance of wo in it. This

is why the regex matches both 'Batwoman' and 'Batman'.

Using the earlier phone number example, you can make the regex look for phone

numbers that do or do not have an area code. Enter the following into the interactive

shell:

>>> phoneRegex = re.compile(r'(\d\d\d-)?\d\d\d-\d\d\d\d')

>>> mo1 = phoneRegex.search('My number is 415-555-4242')

>>> mo1.group()

'415-555-4242'

>>> mo2 = phoneRegex.search('My number is 555-4242')

>>> mo2.group()

'555-4242'

You can think of the ?

If you need to match an actual question mark character, escape it with \?.

Matching Zero or More with the Star

The * (called the star or asterisk the group that precedes

the star can occur any number of times in the text. It can be completely absent or

repeated over and over again. look at the Batman example again.

/

>>> batRegex = re.compile(r'Bat(wo)*man')

>>> mo1 = batRegex.search('The Adventures of Batman')

>>> mo1.group()

'Batman'

>>> mo2 = batRegex.search('The Adventures of Batwoman')

>>> mo2.group()

'Batwoman'

>>> mo3 = batRegex.search('The Adventures of Batwowowowoman')

>>> mo3.group()

'Batwowowowoman'

For 'Batman', the (wo)* part of the regex matches zero instances of wo in the string; for

'Batwoman', the (wo)* matches one instance of wo; and for 'Batwowowowoman', (wo)* matches

four instances of wo.

If you need to match an actual star character, prefix the star in the regular expression

with a backslash, *.

Matching One or More with the Plus

While * + (or plus

the star, which does not require its group to appear in the matched string, the group

preceding a plus must appear at least once. It is not optional. Enter the following into the

interactive shell, and compare it with the star regexes in the previous section:

>>> batRegex = re.compile(r'Bat(wo)+man')

>>> mo1 = batRegex.search('The Adventures of Batwoman')

>>> mo1.group()

'Batwoman'

>>> mo2 = batRegex.search('The Adventures of Batwowowowoman')

>>> mo2.group()

'Batwowowowoman'

>>> mo3 = batRegex.search('The Adventures of Batman')

>>> mo3 == None

True

/

The regex Bat(wo)+man will not match the string 'The Adventures of Batman', because at

least one wo is required by the plus sign.

If you need to match an actual plus sign character, prefix the plus sign with a

backslash to escape it: \+.

Matching Specific Repetitions with Braces

If you have a group that you want to repeat a specific number of times, follow the group

in your regex with a number in braces. For example, the regex (Ha){3} will match the

string 'HaHaHa', but it will not match 'HaHa', since the latter has only two repeats of the

(Ha) group.

Instead of one number, you can specify a range by writing a minimum, a comma, and

a maximum in between the braces. For example, the regex (Ha){3,5} will match 'HaHaHa',

'HaHaHaHa', and 'HaHaHaHaHa'.

You can also leave out the first or second number in the braces to leave the minimum

or maximum unbounded. For example, (Ha){3,} will match three or more instances of the

(Ha) group, while (Ha){,5} will match zero to five instances. Braces can help make your

regular expressions shorter. These two regular expressions match identical patterns:

(Ha){3}

(Ha)(Ha)(Ha)

And these two regular expressions also match identical patterns:

(Ha){3,5}

((Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha)(Ha))

Enter the following into the interactive shell:

>>> haRegex = re.compile(r'(Ha){3}')

>>> mo1 = haRegex.search('HaHaHa')

>>> mo1.group()

'HaHaHa'

>>> mo2 = haRegex.search('Ha')

>>> mo2 == None

True

Here, (Ha){3} matches 'HaHaHa' but not 'Ha' 'Ha', search() returns

None.

/

GREEDY AND NON-GREEDY MATCHING

Since (Ha){3,5} can match three, four, or five instances of Ha in the string 'HaHaHaHaHa',

you may wonder why the Match group() in the previous brace example

returns 'HaHaHaHaHa' instead of the shorter possibilities. After all, 'HaHaHa' and 'HaHaHaHa'

are also valid matches of the regular expression (Ha){3,5}.

greedy by default, which means that in ambiguous

situations they will match the longest string possible. The non-greedy (also called lazy)

version of the braces, which matches the shortest string possible, has the closing brace

followed by a question mark.

Enter the following into the interactive shell, and notice the difference between the

greedy and non-greedy forms of the braces searching the same string:

>>> greedyHaRegex = re.compile(r'(Ha){3,5}')

>>> mo1 = greedyHaRegex.search('HaHaHaHaHa')

>>> mo1.group()

'HaHaHaHaHa'

>>> nongreedyHaRegex = re.compile(r'(Ha){3,5}?')

>>> mo2 = nongreedyHaRegex.search('HaHaHaHaHa')

>>> mo2.group()

'HaHaHa'

Note that the question mark can have two meanings in regular expressions: declaring

a non-greedy match or flagging an optional group. These meanings are entirely

unrelated.

THE FINDALL() METHOD

In addition to the search() method, Regex objects also have a findall() method. While search()

will return a Match object of the first matched text in the searched string, the findall()

method will return the strings of every match in the searched string. To see how search()

returns a Match object only on the first instance of matching text, enter the following into

the interactive shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d')

>>> mo = phoneNumRegex.search('Cell: 415-555-9999 Work: 212-555-0000')

>>> mo.group()

'415-555-9999'

/

On the other hand, findall() will not return a Match object but a list of strings as long

as there are no groups in the regular expression. Each string in the list is a piece of the

searched text that matched the regular expression. Enter the following into the interactive

shell:

>>> phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # has no groups

>>> phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')

['415-555-9999', '212-555-0000']

If there are groups in the regular expression, then findall() will return a list of tuples.

Each tuple represents a found match, and its items are the matched strings for each group

in the regex. To see findall() in action, enter the following into the interactive shell (notice

that the regular expression being compiled now has groups in parentheses):

>>> phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d)-(\d\d\d\d)') # has groups

>>> phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')

[('415', '555', '9999'), ('212', '555', '0000')]

To summarize what the findall() method returns, remember the following:

When called on a regex with no groups, such as \d\d\d-\d\d\d-\d\d\d\d, the method

findall() returns a list of string matches, such as ['415-555-9999', '212-555-0000'].

When called on a regex that has groups, such as (\d\d\d)-(\d\d\d)-(\d\d\d\d), the method

findall() returns a list of tuples of strings (one string for each group), such as [('415',

'555', '9999'), ('212', '555', '0000')].

CHARACTER CLASSES

In the earlier phone number regex example, you learned that \d could stand for any

numeric digit. That is, \d is shorthand for the regular expression (0|1|2|3|4|5|6|7|8|9). There

are many such shorthand character classes, as shown in Table 7-1.

Table 7-1: Shorthand Codes for Common Character Classes

Shorthand character class Represents

\d Any numeric digit from 0 to 9.

\D Any character that is not a numeric digit

from 0 to 9.

/

Shorthand character class Represents

\w Any letter, numeric digit, or the underscore

character. (Think of this as matching

characters.)

\W Any character that is not a letter, numeric

digit, or the underscore character.

\s Any space, tab, or newline character. (Think

characters.)

\S Any character that is not a space, tab, or

newline.

Character classes are nice for shortening regular expressions. The character class [0-5]

will match only the numbers 0 to 5; this is much shorter than typing (0|1|2|3|4|5). Note that

while \d matches digits and \w matches digits, letters, and the underscore, there is no

shorthand character class that matches only letters. (Though you can use the [a-zA-Z]

character class, as explained next.)

For example, enter the following into the interactive shell:

>>> xmasRegex = re.compile(r'\d+\s\w+')

>>> xmasRegex.findall('12 drummers, 11 pipers, 10 lords, 9 ladies, 8 maids, 7

swans, 6 geese, 5 rings, 4 birds, 3 hens, 2 doves, 1 partridge')

['12 drummers', '11 pipers', '10 lords', '9 ladies', '8 maids', '7 swans', '6

geese', '5 rings', '4 birds', '3 hens', '2 doves', '1 partridge']

The regular expression \d+\s\w+ will match text that has one or more numeric digits

(\d+), followed by a whitespace character (\s), followed by one or more

letter/digit/underscore characters (\w+). The findall() method returns all matching strings

of the regex pattern in a list.

MAKING YOUR OWN CHARACTER CLASSES

There are times when you want to match a set of characters but the shorthand character

classes (\d, \w, \s, and so on) are too broad. You can define your own character class using

square brackets. For example, the character class [aeiouAEIOU] will match any vowel,

both lowercase and uppercase. Enter the following into the interactive shell:

>>> vowelRegex = re.compile(r'[aeiouAEIOU]')

>>> vowelRegex.findall('RoboCop eats baby food. BABY FOOD.')

['o', 'o', 'o', 'e', 'a', 'a', 'o', 'o', 'A', 'O', 'O']

/

You can also include ranges of letters or numbers by using a hyphen. For example,

the character class [a-zA-Z0-9] will match all lowercase letters, uppercase letters, and

numbers.

Note that inside the square brackets, the normal regular expression symbols are not

interpreted as such. This means you do not need to escape the ., *, ?, or () characters with

a preceding backslash. For example, the character class [0-5.] will match digits 0 to 5 and

a period. You do not need to write it as [0-5\.].

By placing a caret character (^) just after the character opening bracket, you

can make a negative character class. A negative character class will match all the

characters that are not in the character class. For example, enter the following into the

interactive shell:

>>> consonantRegex = re.compile(r'[^aeiouAEIOU]')

>>> consonantRegex.findall('RoboCop eats baby food. BABY FOOD.')

['R', 'b', 'C', 'p', ' ', 't', 's', ' ', 'b', 'b', 'y', ' ', 'f', 'd', '.', '

', 'B', 'B', 'Y', ' ', 'F', 'D', '.']

vowel.

THE CARET AND DOLLAR SIGN CHARACTERS

You can also use the caret symbol (^) at the start of a regex to indicate that a match must

occur at the beginning of the searched text. Likewise, you can put a dollar sign ($) at the

end of the regex to indicate the string must end with this regex pattern. And you can use

the ^ and $ together to indicate that the entire string must match the regex that is,

not enough for a match to be made on some subset of the string.

For example, the r'^Hello' regular expression string matches strings that begin with

'Hello'. Enter the following into the interactive shell:

>>> beginsWithHello = re.compile(r'^Hello')

>>> beginsWithHello.search('Hello, world!')

<re.Match object; span=(0, 5), match='Hello'>

>>> beginsWithHello.search('He said hello.') == None

True

The r'\d$' regular expression string matches strings that end with a numeric character

from 0 to 9. Enter the following into the interactive shell:

/

>>> endsWithNumber = re.compile(r'\d$')

>>> endsWithNumber.search('Your number is 42')

<re.Match object; span=(16, 17), match='2'>

>>> endsWithNumber.search('Your number is forty two.') == None

True

The r'^\d+$' regular expression string matches strings that both begin and end with one

or more numeric characters. Enter the following into the interactive shell:

>>> wholeStringIsNum = re.compile(r'^\d+$')

>>> wholeStringIsNum.search('1234567890')

<re.Match object; span=(0, 10), match='1234567890'>

>>> wholeStringIsNum.search('12345xyz67890') == None

True

>>> wholeStringIsNum.search('12 34567890') == None

True

The last two search() calls in the previous interactive shell example demonstrate how

the entire string must match the regex if ^ and $ are used.

I always confuse the meanings of these two

THE WILDCARD CHARACTER

The . (or dot) character in a regular expression is called a wildcard and will match any

character except for a newline. For example, enter the following into the interactive

shell:

>>> atRegex = re.compile(r'.at')

>>> atRegex.findall('The cat in the hat sat on the flat mat.')

['cat', 'hat', 'sat', 'lat', 'mat']

Remember that the dot character will match just one character, which is why the

match for the text flat in the previous example matched only lat. To match an actual dot,

escape the dot with a backslash: \..

Matching Everything with Dot-Star

Sometimes you will want to match everything and anything. For example, say you want

to match the string 'First Name:', followed by any and all text, followed by 'Last Name:', and

then followed by anything again. You can use the dot-star (.*) to stand in for that

/

Enter the following into the interactive shell:

>>> nameRegex = re.compile(r'First Name: (.*) Last Name: (.*)')

>>> mo = nameRegex.search('First Name: Al Last Name: Sweigart')

>>> mo.group(1)

'Al'

>>> mo.group(2)

'Sweigart'

The dot-star uses greedy mode: It will always try to match as much text as possible.

To match any and all text in a non-greedy fashion, use the dot, star, and question mark

(.*?). Like with braces, the question mark tells Python to match in a non-greedy way.

Enter the following into the interactive shell to see the difference between the greedy

and non-greedy versions:

>>> nongreedyRegex = re.compile(r'<.*?>')

>>> mo = nongreedyRegex.search('<To serve man> for dinner.>')

>>> mo.group()

'<To serve man>'

>>> greedyRegex = re.compile(r'<.*>')

>>> mo = greedyRegex.search('<To serve man> for dinner.>')

>>> mo.group()

'<To serve man> for dinner.>'

'<To serve man> for dinner.>'

has two possible matches for the closing angle bracket. In the non-greedy version of the

regex, Python matches the shortest possible string: '<To serve man>'. In the greedy version,

Python matches the longest possible string: '<To serve man> for dinner.>'.

Matching Newlines with the Dot Character

The dot-star will match everything except a newline. By passing re.DOTALL as the second

argument to re.compile(), you can make the dot character match all characters, including

the newline character.

Enter the following into the interactive shell:

/

>>> noNewlineRegex = re.compile('.*')

>>> noNewlineRegex.search('Serve the public trust.\nProtect the innocent.

\nUphold the law.').group()

'Serve the public trust.'

>>> newlineRegex = re.compile('.*', re.DOTALL)

>>> newlineRegex.search('Serve the public trust.\nProtect the innocent.

\nUphold the law.').group()

'Serve the public trust.\nProtect the innocent.\nUphold the law.'

The regex noNewlineRegex, which did not have re.DOTALL passed to the re.compile() call

that created it, will match everything only up to the first newline character, whereas

newlineRegex, which did have re.DOTALL passed to re.compile(), matches everything. This is

why the newlineRegex.search() call matches the full string, including its newline characters.

REVIEW OF REGEX SYMBOLS

This chapter covered a lot of notation, so a quick review of what you learned

about basic regular expression syntax:

The ? matches zero or one of the preceding group.

The * matches zero or more of the preceding group.

The + matches one or more of the preceding group.

The {n} matches exactly n of the preceding group.

The {n,} matches n or more of the preceding group.

The {,m} matches 0 to m of the preceding group.

The {n,m} matches at least n and at most m of the preceding group.

{n,m}? or *? or +? performs a non-greedy match of the preceding group.

^spam means the string must begin with spam.

spam$ means the string must end with spam.

The . matches any character, except newline characters.

\d, \w, and \s match a digit, word, or space character, respectively.

\D, \W, and \S match anything except a digit, word, or space character, respectively.

[abc] matches any character between the brackets (such as a, b, or c).

[^abc] matches any character that is

/

CASE-INSENSITIVE MATCHING

Normally, regular expressions match text with the exact casing you specify. For example,

the following regexes match completely different strings:

>>> regex1 = re.compile('RoboCop')

>>> regex2 = re.compile('ROBOCOP')

>>> regex3 = re.compile('robOcop')

>>> regex4 = re.compile('RobocOp')

But sometimes you care only about matching the letters without worrying whether

-insensitive, you can pass

re.IGNORECASE or re.I as a second argument to re.compile(). Enter the following into the

interactive shell:

>>> robocop = re.compile(r'robocop', re.I)

>>> robocop.search('RoboCop is part man, part machine, all cop.').group()

'RoboCop'

>>> robocop.search('ROBOCOP protects the innocent.').group()

'ROBOCOP'

>>> robocop.search('Al, why does your programming book talk about robocop so much?').group()

'robocop'

SUBSTITUTING STRINGS WITH THE SUB() METHOD

Regular expressions can not only find text patterns but can also substitute new text in

place of those patterns. The sub() method for Regex objects is passed two arguments. The

first argument is a string to replace any matches. The second is the string for the regular

expression. The sub() method returns a string with the substitutions applied.

For example, enter the following into the interactive shell:

>>> namesRegex = re.compile(r'Agent \w+')

>>> namesRegex.sub('CENSORED', 'Agent Alice gave the secret documents to Agent Bob.')

'CENSORED gave the secret documents to CENSORED.'

Sometimes you may need to use the matched text itself as part of the substitution. In

the first argument to sub(), you can type \1, \2, \3

group 1, 2, 3, and so on, in the

/

For example, say you want to censor the names of the secret agents by showing just

the first letters of their names. To do this, you could use the regex Agent (\w)\w* and pass

r'\1****' as the first argument to sub(). The \1 in that string will be replaced by whatever

text was matched by group 1 that is, the (\w) group of the regular expression.

>>> agentNamesRegex = re.compile(r'Agent (\w)\w*')

>>> agentNamesRegex.sub(r'\1****', 'Agent Alice told Agent Carol that Agent

Eve knew Agent Bob was a double agent.')

A**** told C**** that E**** knew B**** was a double agent.'

MANAGING COMPLEX REGEXES

Regular expressions are fine if the text pattern you need to match is simple. But

matching complicated text patterns might require long, convoluted regular expressions.

You can mitigate this by telling the re.compile() function to ignore whitespace and

passing the variable re.VERBOSE as the second argument to re.compile().

Now instead of a hard-to-read regular expression like this:

phoneRegex = re.compile(r'((\d{3}|\(\d{3}\))?(\s|-|\.)?\d{3}(\s|-|\.)\d{4}

(\s*(ext|x|ext.)\s*\d{2,5})?)')

you can spread the regular expression over multiple lines with comments like this:

phoneRegex = re.compile(r'''(

(\d{3}|\(\d{3}\))? # area code

(\s|-|\.)? # separator

\d{3} # first 3 digits

(\s|-|\.) # separator

\d{4} # last 4 digits

(\s*(ext|x|ext.)\s*\d{2,5})? # extension

)''', re.VERBOSE)

Note how the previous example uses the triple-quote syntax (''') to create a multiline

string so that you can spread the regular expression definition over many lines, making it

much more legible.

The comment rules inside the regular expression string are the same as regular Python

code: the # symbol and everything after it to the end of the line are ignored. Also, the

extra spaces inside the multiline string for the regular expression are not considered part

/

of the text pattern to be matched. This lets you organize the regular expression so

easier to read.

COMBINING RE.IGNORECASE, RE.DOTALL, AND RE.VERBOSE

What if you want to use re.VERBOSE to write comments in your regular expression but

also want to use re.IGNORECASE to ignore capitalization? Unfortunately, the re.compile()

function takes only a single value as its second argument. You can get around this

limitation by combining the re.IGNORECASE, re.DOTALL, and re.VERBOSE variables using

the pipe character (|), which in this context is known as the bitwise or operator.

So if you want a regular expression case-insensitive and includes newlines to

match the dot character, you would form your re.compile() call like this:

>>> someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL)

Including all three options in the second argument will look like this:

>>> someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL | re.VERBOSE)

This syntax is a little old-fashioned and originates from early versions of Python. The

details of the bitwise operators are beyond the scope of this book, but check out the

resources at https://nostarch.com/automatestuff2/ for more information. You can also

about them in the resources, too.

PROJECT: PHONE NUMBER AND EMAIL ADDRESS EXTRACTOR

Say you have the boring task of finding every phone number and email address in a long

web page or document. If you manually scroll through the page, you might end up

searching for a long time. But if you had a program that could search the text in your

clipboard for phone numbers and email addresses, you could simply press CTRL-A to

select all the text, press CTRL-C to copy it to the clipboard, and then run your program. It

could replace the text on the clipboard with just the phone numbers and email addresses

it finds.

code. But more often than not, best to take a step back and consider the bigger

picture. I recommend first drawing up a high-level plan for what your program needs to

you can worry about that later. Right now,

stick to broad strokes.

For example, your phone and email address extractor will need to do the following:

/

1. Get the text off the clipboard.

2. Find all phone numbers and email addresses in the text.

3. Paste them onto the clipboard.

Now you can start thinking about how this might work in code. The code will need to

do the following:

1. Use the pyperclip module to copy and paste strings.

2. Create two regexes, one for matching phone numbers and the other for matching

email addresses.

3. Find all matches, not just the first match, of both regexes.

4. Neatly format the matched strings into a single string to paste.

5. Display some kind of message if no matches were found in the text.

This list is like a road map for the project. As you write the code, you can focus on

each of these steps separately. Each step is fairly manageable and expressed in terms of

things you already know how to do in Python.

Step 1: Create a Regex for Phone Numbers

First, you have to create a regular expression to search for phone numbers. Create a new

file, enter the following, and save it as phoneAndEmail.py:

#! python3

phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(

(\d{3}|\(\d{3}\))? # area code

(\s|-|\.)? # separator

(\d{3}) # first 3 digits

(\s|-|\.) # separator

(\d{4}) # last 4 digits

(\s*(ext|x|ext.)\s*(\d{2,5}))? # extension

)''', re.VERBOSE)

TODO: Create email regex.

TODO: Find matches in clipboard text.

/

NOTE

easy to get mixed up with regular expressions that contain groups with

parentheses () and escaped parentheses \(\). Remember to double-check that

error

message.

TODO: Copy results to the clipboard.

The TODO

write the actual code.

The phone number begins with an optional area code, so the area code group is

followed with a question mark. Since the area code can be just three digits (that is, \d{3})

or three digits within parentheses (that is, \(\d{3}\)), you should have a pipe joining those

parts. You can add the regex comment # Area code to this part of the multiline string to

help you remember what (\d{3}|\(\d{3}\))? is supposed to match.

The phone number separator character can be a space (\s), hyphen (-), or period (.), so

these parts should also be joined by pipes. The next few parts of the regular expression

are straightforward: three digits, followed by another separator, followed by four digits.

The last part is an optional extension made up of any number of spaces followed by ext,

x, or ext., followed by two to five digits.

Step 2: Create a Regex for Email Addresses

You will also need a regular expression that can match email addresses. Make your

program look like the following:

#! python3

phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(

--snip--

Create email regex.

emailRegex = re.compile(r'''(

[a-zA-Z0-9._%+-]+ # username

@ # @ symbol

/

[a-zA-Z0-9.-]+ # domain name

(\.[a-zA-Z]{2,4}) # dot-something

)''', re.VERBOSE)

TODO: Find matches in clipboard text.

TODO: Copy results to the clipboard.

The username part of the email address is one or more characters that can be any of

the following: lowercase and uppercase letters, numbers, a dot, an underscore, a percent

sign, a plus sign, or a hyphen. You can put all of these into a character class: [a-zA-Z0- 9._%+-

].

The domain and username are separated by an @ symbol . The domain name has

a slightly less permissive character class with only letters, numbers, periods, and

hyphens: [a-zA-Z0-9.-] - top-

level domain), which can really be dot-anything. This is between two and four

characters.

email

ll encounter.

Step 3: Find All Matches in the Clipboard Text

Now that you have specified the regular expressions for phone numbers and email

re module do the hard work of finding all the matches on

the clipboard. The pyperclip.paste() function will get a string value of the text on the

clipboard, and the findall() regex method will return a list of tuples.

Make your program look like the following:

#! python3

phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

import pyperclip, re

phoneRegex = re.compile(r'''(

--snip--

Find matches in clipboard text.

text = str(pyperclip.paste())

/

matches = []

for groups in phoneRegex.findall(text):

phoneNum = '-'.join([groups[1], groups[3], groups[5]])

if groups[8] != '':

phoneNum += ' x' + groups[8]

matches.append(phoneNum)

for groups in emailRegex.findall(text):

matches.append(groups[0])

TODO: Copy results to the clipboard.

There is one tuple for each match, and each tuple contains strings for each group in

the regular expression. Remember that group 0 matches the entire regular expression, so

the group at index 0 of the tuple is the one you are interested in.

As you can see at matches. It starts

off as an empty list, and a couple for loops. For the email addresses, you append group 0

of each match . For the matched phone numbers, you want to just append group

0. While the program detects phone numbers in several formats, you want the phone

number appended to be in a single, standard format. The phoneNum variable contains a

string built from groups 1, 3, 5, and 8 of the matched text . (These groups are the area

code, first three digits, last four digits, and extension.)

Step 4: Join the Matches into a String for the Clipboard

Now that you have the email addresses and phone numbers as a list of strings in matches,

you want to put them on the clipboard. The pyperclip.copy() function takes only a single

string value, not a list of strings, so you call the join() method on matches.

To make it easier to see that the program is working, print any matches you find

to the terminal. If no phone numbers or email addresses were found, the program should

tell the user this.

Make your program look like the following:

#! python3

phoneAndEmail.py - Finds phone numbers and email addresses on the clipboard.

--snip--

for groups in emailRegex.findall(text):

matches.append(groups[0])

Copy results to the clipboard.

/

if len(matches) > 0:

pyperclip.copy('\n'.join(matches))

print('Copied to clipboard:')

print('\n'.join(matches))

else:

print('No phone numbers or email addresses found.')

Running the Program

For an example, open your web browser to the No Starch Press contact page at

https://nostarch.com/contactus/, press CTRL-A to select all the text on the page, and press

CTRL-C to copy it to the clipboard. When you run this program, the output will look

something like this:

Copied to clipboard:

800-420-7240

415-863-9900

415-863-9950

info@nostarch.com

media@nostarch.com

academic@nostarch.com

info@nostarch.com

Ideas for Similar Programs

Identifying patterns of text (and possibly substituting them with the sub() method) has

many different potential applications. For example, you could:

Find website URLs that begin with http:// or https://.

Clean up dates in different date formats (such as 3/14/2019, 03-14-2019, and

2015/3/19) by replacing them with dates in a single, standard format.

Remove sensitive information such as Social Security or credit card numbers.

Find common typos such as multiple spaces between words, accidentally

accidentally repeated words, or multiple exclamation marks at the end of sentences.

Those are annoying!!

SUMMARY

While a computer can search for text quickly, it must be told precisely what to look for.

Regular expressions allow you to specify the pattern of characters you are looking for,

rather than the exact text itself. In fact, some word processing and spreadsheet

mailto:info@nostarch.com
mailto:media@nostarch.com
mailto:academic@nostarch.com
mailto:info@nostarch.com

/

applications provide find-and-replace features that allow you to search using regular

expressions.

The re module that comes with Python lets you compile Regex objects. These objects

have several methods: search() to find a single match, findall() to find all matching

instances, and sub() to do a find-and-replace substitution of text.

You can find out more in the official Python documentation at

https://docs.python.org/3/library/re.html. Another useful resource is the tutorial website

https://www.regular-expressions.info/.

PRACTICE QUESTIONS

1. What is the function that creates Regex objects?

2. Why are raw strings often used when creating Regex objects?

3. What does the search() method return?

4. How do you get the actual strings that match the pattern from a Match object?

5. In the regex created from r'(\d\d\d)-(\d\d\d-\d\d\d\d)', what does group 0 cover? Group 1?

Group 2?

6. Parentheses and periods have specific meanings in regular expression syntax. How

would you specify that you want a regex to match actual parentheses and period

characters?

7. The findall() method returns a list of strings or a list of tuples of strings. What makes it

return one or the other?

8. What does the | character signify in regular expressions?

9. What two things does the ? character signify in regular expressions?

10. What is the difference between the + and * characters in regular expressions?

11. What is the difference between {3} and {3,5} in regular expressions?

12. What do the \d, \w, and \s shorthand character classes signify in regular expressions?

13. What do the \D, \W, and \S shorthand character classes signify in regular expressions?

14. What is the difference between .* and .*??

15. What is the character class syntax to match all numbers and lowercase letters?

16. How do you make a regular expression case-insensitive?

17. What does the . character normally match? What does it match if re.DOTALL is passed

as the second argument to re.compile()?

http://www.regular-expressions.info/

/

18. If numRegex = re.compile(r'\d+'), what will numRegex.sub('X', '12 drummers, 11 pipers, five rings,

3 hens') return?

19. What does passing re.VERBOSE as the second argument to re.compile() allow you to

do?

20. How would you write a regex that matches a number with commas for every three

digits? It must match the following:

'42'

'1,234'

'6,368,745'

but not the following:

'12,34,567' (which has only two digits between the commas)

'1234' (which lacks commas)

21. How would you write a regex that matches the full name of someone whose last

name is Watanabe? You can assume that the first name that comes before it will

always be one word that begins with a capital letter. The regex must match the

following:

'Haruto Watanabe'

'Alice Watanabe'

'RoboCop Watanabe'

but not the following:

'haruto Watanabe' (where the first name is not capitalized)

'Mr. Watanabe' (where the preceding word has a nonletter character)

'Watanabe' (which has no first name)

'Haruto watanabe' (where Watanabe is not capitalized)

22. How would you write a regex that matches a sentence where the first word is either

Alice, Bob, or Carol; the second word is either eats, pets, or throws; the third word is

apples, cats, or baseballs; and the sentence ends with a period? This regex should be

case-insensitive. It must match the following:

'Alice eats apples.'

'Bob pets cats.'

'Carol throws baseballs.'

/

'Alice throws Apples.'

'BOB EATS CATS.'

but not the following:

'RoboCop eats apples.'

'ALICE THROWS FOOTBALLS.'

'Carol eats 7 cats.'

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

Date Detection

Write a regular expression that can detect dates in the DD/MM/YYYY format. Assume

that the days range from 01 to 31, the months range from 01 to 12, and the years range

from 1000 to 2999. Note that if the day or month is a single digit,

zero.

years; it will accept nonexistent dates like 31/02/2020 or 31/04/2021. Then store these

strings into variables named month, day, and year, and write additional code that can detect

if it is a valid date. April, June, September, and November have 30 days, February has 28

days, and the rest of the months have 31 days. February has 29 days in leap years. Leap

years are every year evenly divisible by 4, except for years evenly divisible by 100,

unless the year is also evenly divisible by 400. Note how this calculation makes it

impossible to make a reasonably sized regular expression that can detect a valid date.

Strong Password Detection

Write a function that uses regular expressions to make sure the password string it is

passed is strong. A strong password is defined as one that is at least eight characters

long, contains both uppercase and lowercase characters, and has at least one digit. You

may need to test the string against multiple regex patterns to validate its strength.

Regex Version of the strip() Method

Write a function that takes a string and does the same thing as the strip() string method. If

no other arguments are passed other than the string to strip, then whitespace characters

will be removed from the beginning and end of the string. Otherwise, the characters

specified in the second argument to the function will be removed from the string.
/

READING AND WRITING FILES

NOTE

Since your system probably has different files and folders on it than mine, you

be able to follow every example in this chapter exactly. Still, try to follow along

using folders that exist on your computer.

FILES AND FILE PATHS

A file has two key properties: a filename (usually written as one word) and a path. The

path specifies the location of a file on the computer. For example, there is a file on my

Windows laptop with the filename project.docx in the path C:\Users\Al\Documents. The

part of the filename after the last period is called the extension and tells you a

type. The filename project.docx is a Word document, and Users, Al, and Documents all

refer to folders (also called directories). Folders can contain files and other folders. For

example, project.docx is in the Documents folder, which is inside the Al folder, which is

inside the Users folder. Figure 9-1 shows this folder organization.

Figure 9-1: A file in a hierarchy of folders

The C:\ part of the path is the root folder, which contains all other folders. On

Windows, the root folder is named C:\ and is also called the C: drive. On macOS and

Linux, the root folder is / -style root folder, C:\. If you

are entering the interactive shell examples on macOS or Linux, enter / instead.

Additional volumes, such as a DVD drive or USB flash drive, will appear differently

on different operating systems. On Windows, they appear as new, lettered root drives,

such as D:\ or E:\. On macOS, they appear as new folders under the /Volumes folder. On

Linux, they appear as new folders under the /mnt folder. Also note that while

folder names and filenames are not case-sensitive on Windows and macOS, they are case-

sensitive on Linux.

/

Backslash on Windows and Forward Slash on macOS and Linux

On Windows, paths are written using backslashes (\) as the separator between folder

names. The macOS and Linux operating systems, however, use the forward slash (/) as

their path separator. If you want your programs to work on all operating systems, you

will have to write your Python scripts to handle both cases.

Fortunately, this is simple to do with the Path() function in the pathlib module. If you

pass it the string values of individual file and folder names in your path, Path() will return

a string with a file path using the correct path separators. Enter the following into the

interactive shell:

>>> from pathlib import Path

>>> Path('spam', 'bacon', 'eggs')

WindowsPath('spam/bacon/eggs')

>>> str(Path('spam', 'bacon', 'eggs'))

'spam\\bacon\\eggs'

Note that the convention for importing pathlib is to run from pathlib import Path, since

pathlib.Path everywhere Path shows up in our code. Not only

is this extra typing redundant, but also redundant.

Path('spam',

'bacon', 'eggs') returned a WindowsPath object for the joined path, represented as

WindowsPath('spam/bacon/eggs'). Even though Windows uses backslashes, the WindowsPath

representation in the interactive shell displays them using forward slashes, since open

source software developers have historically favored the Linux operating system.

If you want to get a simple text string of this path, you can pass it to the str() function,

which in our example returns 'spam\\bacon\\eggs'. (Notice that the backslashes are doubled

because each backslash needs to be escaped by another backslash character.) If I had

called this function on, say, Linux, Path() would have returned a PosixPath object that,

when passed to str(), would have returned 'spam/bacon/eggs'. (POSIX is a set of standards

for Unix-like operating systems such as Linux.)

These Path objects (really, WindowsPath or PosixPath objects, depending on your

operating system) will be passed to several of the file-related functions introduced in this

chapter. For example, the following code joins names from a list of filenames to the end

name:

>>> from pathlib import Path

>>> myFiles = ['accounts.txt', 'details.csv', 'invite.docx']

>>> for filename in myFiles:

/

print(Path(r'C:\Users\Al', filename))

C:\Users\Al\accounts.txt

C:\Users\Al\details.csv

C:\Users\Al\invite.docx

However, you can use backslashes in filenames on macOS and Linux. So while

Path(r'spam\eggs') refers to two separate folders (or a file eggs in a folder spam) on

Windows, the same command would refer to a single folder (or file) named spam\eggs

on macOS and Linux. For this reason, usually a good idea to always use forward

pathlib

module will ensure that it always works on all operating systems.

Note that pathlib was introduced in Python 3.4 to replace older os.path functions. The

Python Standard Library modules support it as of Python 3.6, but if you are working

with legacy Python 2 versions, I recommend using pathlib2, which gives you pathlib

features on Python 2.7. Appendix A has instructions for installing pathlib2 using pip.

os.path function with pathlib You

can look up the older functions at https://docs.python.org/3/library/os.path.html.

Using the / Operator to Join Paths

We normally use the + operator to add two integer or floating-point numbers, such as in

the expression 2 + 2, which evaluates to the integer value 4. But we can also use the +

operator to concatenate two string values, like the expression 'Hello' + 'World', which

evaluates to the string value 'HelloWorld'. Similarly, the / operator that we normally use for

division can also combine Path objects and strings. This is helpful for modifying a Path

Path() function.

For example, enter the following into the interactive shell:

>>> from pathlib import Path

>>> Path('spam') / 'bacon' / 'eggs'

WindowsPath('spam/bacon/eggs')

>>> Path('spam') / Path('bacon/eggs')

WindowsPath('spam/bacon/eggs')

>>> Path('spam') / Path('bacon', 'eggs')

WindowsPath('spam/bacon/eggs')

Using the / operator with Path objects makes joining paths just as easy as string

concatenation. also safer than using string concatenation or the join() method, like we

do in this example:

/

>>> homeFolder = r'C:\Users\Al'

>>> subFolder = 'spam'

>>> homeFolder + '\\' + subFolder

'C:\\Users\\Al\\spam'

>>> '\\'.join([homeFolder, subFolder])

'C:\\Users\\Al\\spam'

Windows. You could add an if statement that checks sys.platform (which contains a string

ind of slash to use, but

-prone.

The pathlib module solves these problems by reusing the / math division operator to

join paths correctly, no matter what operating system your code is running on. The

following example uses this strategy to join the same paths as in the previous example:

>>> homeFolder = Path('C:/Users/Al')

>>> subFolder = Path('spam')

>>> homeFolder / subFolder

WindowsPath('C:/Users/Al/spam')

>>> str(homeFolder / subFolder)

'C:\\Users\\Al\\spam'

The only thing you need to keep in mind when using the / operator for joining paths is

that one of the first two values must be a Path object. Python will give you an error if you

try entering the following into the interactive shell:

>>> 'spam' / 'bacon' / 'eggs'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for /: 'str' and 'str'

Python evaluates the / operator from left to right and evaluates to a Path object, so

either the first or second leftmost value must be a Path object for the entire expression to

evaluate to a Path object. how the / operator and a Path object evaluate to the final

Path object.

/

NOTE

While folder is the more modern name for directory, note that current working

directory (or just working directory

If you see the TypeError: unsupported operand type(s) for /: 'str' and 'str' error message shown

previously, you need to put a Path object on the left side of the expression.

The / operator replaces the older os.path.join() function, which you can learn more

about from https://docs.python.org/3/library/os.path.html#os.path.join.

The Current Working Directory

Every program that runs on your computer has a current working directory, or cwd. Any

filenames or paths that do not begin with the root folder are assumed to be under the

current working directory.

You can get the current working directory as a string value with the Path.cwd() function

and change it using os.chdir(). Enter the following into the interactive shell:

>>> from pathlib import Path

>>> import os

>>> Path.cwd()

WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37')'

>>> os.chdir('C:\\Windows\\System32')

>>> Path.cwd()

WindowsPath('C:/Windows/System32')

Here, the current working directory is set to

C:\Users\Al\AppData\Local\Programs\Python\Python37, so the filename project.docx

refers to C:\Users\Al\AppData\Local\Programs\Python\Python37\project.docx. When we

change the current working directory to C:\Windows\System32, the filename project.docx

is interpreted as C:\Windows\System32\project.docx.

/

Python will display an error if you try to change to a directory that does not exist.

>>> os.chdir('C:/ThisFolderDoesNotExist')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

FileNotFoundError: [WinError 2] The system cannot find the file specified:

'C:/ThisFolderDoesNotExist'

There is no pathlib function for changing the working directory, because changing the

current working directory while a program is running can often lead to subtle bugs.

The os.getcwd() function is the older way of getting the current working directory as a

string.

The Home Directory

All users have a folder for their own files on the computer called the home directory or

home folder. You can get a Path object of the home folder by calling Path.home():

>>> Path.home()

WindowsPath('C:/Users/Al')

The home directories are located in a set place depending on your operating system:

On Windows, home directories are under C:\Users.

On Mac, home directories are under /Users.

On Linux, home directories are often under /home.

Your scripts will almost certainly have permissions to read and write the files under

work with.

Absolute vs. Relative Paths

There are two ways to specify a file path:

An absolute path, which always begins with the root folder

A relative path directory

There are also the dot (.) and dot-dot (..) folders. These are not real folders but special

Two -

/

Figure 9-2 is an example of some folders and files. When the current working

directory is set to C:\bacon, the relative paths for the other folders and files are set as

they are in the figure.

Figure 9-2: The relative paths for folders and files in the working directory C:\bacon

The .\ at the start of a relative path is optional. For example, .\spam.txt and spam.txt

refer to the same file.

Creating New Folders Using the os.makedirs() Function

Your programs can create new folders (directories) with the os.makedirs() function. Enter

the following into the interactive shell:

>>> import os

>>> os.makedirs('C:\\delicious\\walnut\\waffles')

This will create not just the C:\delicious folder but also a walnut folder inside

C:\delicious and a waffles folder inside C:\delicious\walnut. That is, os.makedirs() will

create any necessary intermediate folders in order to ensure that the full path exists.

Figure 9-3 shows this hierarchy of folders.

/

Figure 9-3: The result of os.makedirs('C:\\delicious\\walnut\\waffles')

To make a directory from a Path object, call the mkdir() method. For example, this code

will create a spam folder under the home folder on my computer:

>>> from pathlib import Path

>>> Path(r'C:\Users\Al\spam').mkdir()

Note that mkdir()

subdirectories at once like os.makedirs().

Handling Absolute and Relative Paths

The pathlib module provides methods for checking whether a given path is an absolute

path and returning the absolute path of a relative path.

Calling the is_absolute() method on a Path object will return True if it represents an

absolute path or False if it represents a relative path. For example, enter the following into

the interactive shell, using your own files and folders instead of the exact ones listed

here:

>>> Path.cwd()

WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37')

>>> Path.cwd().is_absolute()

True

>>> Path('spam/bacon/eggs').is_absolute()

False

To get an absolute path from a relative path, you can put Path.cwd() / in front of the

relative Path path

that is relative to the current working directory. Enter the following into the interactive

shell:

>>> Path('my/relative/path')

WindowsPath('my/relative/path')

>>> Path.cwd() / Path('my/relative/path')

WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37/my/relative/

path')

If your relative path is relative to another path besides the current working directory,

just replace Path.cwd() with that other path instead. The following example gets an

absolute path using the home directory instead of the current working directory:

/

>>> Path('my/relative/path')

WindowsPath('my/relative/path')

>>> Path.home() / Path('my/relative/path')

WindowsPath('C:/Users/Al/my/relative/path')

The os.path module also has some useful functions related to absolute and relative

paths:

Calling os.path.abspath(path) will return a string of the absolute path of the argument.

This is an easy way to convert a relative path into an absolute one.

Calling os.path.isabs(path) will return True if the argument is an absolute path and False

if it is a relative path.

Calling os.path.relpath(path, start) will return a string of a relative path from the start

path to path. If start is not provided, the current working directory is used as the start

path.

Try these functions in the interactive shell:

>>> os.path.abspath('.')

'C:\\Users\\Al\\AppData\\Local\\Programs\\Python\\Python37'

>>> os.path.abspath('.\\Scripts')

'C:\\Users\\Al\\AppData\\Local\\Programs\\Python\\Python37\\Scripts'

>>> os.path.isabs('.')

False

>>> os.path.isabs(os.path.abspath('.'))

True

Since C:\Users\Al\AppData\Local\Programs\Python\Python37 was the working

directory when os.path.abspath() -

path 'C:\\Users\\Al\\AppData\\Local\\Programs\\Python\\Python37'.

Enter the following calls to os.path.relpath() into the interactive shell:

>>> os.path.relpath('C:\\Windows', 'C:\\')

'Windows'

>>> os.path.relpath('C:\\Windows', 'C:\\spam\\eggs')

'..\\..\\Windows'

When the relative path is within the same parent folder as the path, but is within

subfolders of a different path, such as 'C:\\Windows' and 'C:\\spam\\eggs', you can use the

/

-

Getting the Parts of a File Path

Given a Path object, you can extract the file different parts as strings using several

Path object attributes. These can be useful for constructing new file paths based on

existing ones. The attributes are diagrammed in Figure 9-4.

Figure 9-4: The parts of a Windows (top) and macOS/Linux (bottom) file path

The parts of a file path include the following:

The anchor, which is the root folder of the filesystem

On Windows, the drive, which is the single letter that often denotes a physical hard

drive or other storage device

The parent, which is the folder that contains the file

The name of the file, made up of the stem (or base name) and the suffix (or

extension)

Note that Windows Path objects have a drive attribute, but macOS and Linux Path

drive

To extract each attribute from the file path, enter the following into the interactive

shell:

>>> p = Path('C:/Users/Al/spam.txt')

>>> p.anchor

'C:\\'

>>> p.parent # This is a Path object, not a string.

WindowsPath('C:/Users/Al')

>>> p.name

'spam.txt'

/

>>> p.stem

'spam'

>>> p.suffix

'.txt'

>>> p.drive

'C:'

These attributes evaluate to simple string values, except for parent, which evaluates to

another Path object.

The parents attribute (which is different from the parent attribute) evaluates to the

ancestor folders of a Path object with an integer index:

>>> Path.cwd()

WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37')

>>> Path.cwd().parents[0]

WindowsPath('C:/Users/Al/AppData/Local/Programs/Python')

>>> Path.cwd().parents[1]

WindowsPath('C:/Users/Al/AppData/Local/Programs')

>>> Path.cwd().parents[2]

WindowsPath('C:/Users/Al/AppData/Local')

>>> Path.cwd().parents[3]

WindowsPath('C:/Users/Al/AppData')

>>> Path.cwd().parents[4]

WindowsPath('C:/Users/Al')

>>> Path.cwd().parents[5]

WindowsPath('C:/Users')

>>> Path.cwd().parents[6]

WindowsPath('C:/')

The older os.path module also has similar functions for getting the different parts of a

path written in a string value. Calling os.path.dirname(path) will return a string of

everything that comes before the last slash in the path argument. Calling

os.path.basename(path) will return a string of everything that comes after the last slash in the

path argument. The directory (or dir) name and base name of a path are outlined in Figure 9-

5.

/

Figure 9-5: The base name follows the last slash in a path and is the same as the filename. The dir name is

everything before the last slash.

For example, enter the following into the interactive shell:

>>> calcFilePath = 'C:\\Windows\\System32\\calc.exe'

>>> os.path.basename(calcFilePath)

'calc.exe'

>>> os.path.dirname(calcFilePath)

'C:\\Windows\\System32'

os.path.split() to

get a tuple value with these two strings, like so:

>>> calcFilePath = 'C:\\Windows\\System32\\calc.exe'

>>> os.path.split(calcFilePath)

('C:\\Windows\\System32', 'calc.exe')

Notice that you could create the same tuple by calling os.path.dirname() and

os.path.basename() and placing their return values in a tuple:

>>> (os.path.dirname(calcFilePath), os.path.basename(calcFilePath))

('C:\\Windows\\System32', 'calc.exe')

But os.path.split() is a nice shortcut if you need both values.

Also, note that os.path.split() does not take a file path and return a list of strings of each

folder. For that, use the split() string method and split on the string in os.sep. (Note that sep

is in os, not os.path.) The os.sep variable is set to the correct folder-separating slash for the

computer running the program, '\\' on Windows and '/' on macOS and Linux, and splitting

on it will return a list of the individual folders.

For example, enter the following into the interactive shell:

>>> calcFilePath.split(os.sep)

['C:', 'Windows', 'System32', 'calc.exe']

This returns all the parts of the path as strings.

On macOS and Linux systems, the returned list of folders will begin with a blank

string, like this:

>>> '/usr/bin'.split(os. sep)

['', 'usr', 'bin']

/

The split() string method will work to return a list of each part of the path.

Finding File Sizes and Folder Contents

Once you have ways of handling file paths, you can then start gathering information

about specific files and folders. The os.path module provides functions for finding the size

of a file in bytes and the files and folders inside a given folder.

Calling os.path.getsize(path) will return the size in bytes of the file in the path

argument.

Calling os.listdir(path) will return a list of filename strings for each file in the path

argument. (Note that this function is in the os module, not os.path.)

>>> os.path.getsize('C:\\Windows\\System32\\calc.exe')

27648

>>> os.listdir('C:\\Windows\\System32')

['0409', '12520437.cpx', '12520850.cpx', '5U877.ax', 'aaclient.dll',

--snip--

'xwtpdui.dll', 'xwtpw32.dll', 'zh-CN', 'zh-HK', 'zh-TW', 'zipfldr.dll']

As you can see, the calc.exe program on my computer is 27,648 bytes in size, and I

have a lot of files in C:\Windows\system32. If I want to find the total size of all the files

in this directory, I can use os.path.getsize() and os.listdir() together.

>>> totalSize = 0

>>> for filename in os.listdir('C:\\Windows\\System32'):

totalSize = totalSize + os.path.getsize(os.path.join('C:\\Windows\\System32', filename))

>>> print(totalSize)

2559970473

As I loop over each filename in the C:\Windows\System32 folder, the totalSize variable

is incremented by the size of each file. Notice how when I call os.path.getsize(), I use

os.path.join() to join the folder name with the current filename. The integer that

os.path.getsize() returns is added to the value of totalSize. After looping through all the files,

I print totalSize to see the total size of the C:\Windows\System32 folder.

Modifying a List of Files Using Glob Patterns

If you want to work on specific files, the glob() method is simpler to use than listdir(). Path

objects have a glob() method for listing the contents of a folder according to a glob

/

pattern. Glob patterns are like a simplified form of regular expressions often used in

command line commands. The glob() method returns a generator object (which are

list() to easily view in the

interactive shell:

>>> p = Path('C:/Users/Al/Desktop')

>>> p.glob('*')

<generator object Path.glob at 0x000002A6E389DED0>

>>> list(p.glob('*')) # Make a list from the generator.

[WindowsPath('C:/Users/Al/Desktop/1.png'), WindowsPath('C:/Users/Al/

Desktop/22-ap.pdf'), WindowsPath('C:/Users/Al/Desktop/cat.jpg'),

--snip--

WindowsPath('C:/Users/Al/Desktop/zzz.txt')]

The asterisk (* p.glob('*') returns a

generator of all files in the path stored in p.

Like with regexes, you can create complex expressions:

>>> list(p.glob('*.txt') # Lists all text files.

[WindowsPath('C:/Users/Al/Desktop/foo.txt'),

--snip--

WindowsPath('C:/Users/Al/Desktop/zzz.txt')]

The glob pattern '*.txt' will return files that start with any combination of characters as

long as it ends with the string '.txt', which is the text file extension.

In contrast with the asterisk, the question mark (?) stands for any single character:

>>> list(p.glob('project?.docx')

[WindowsPath('C:/Users/Al/Desktop/project1.docx'), WindowsPath('C:/Users/Al/

Desktop/project2.docx'),

--snip--

WindowsPath('C:/Users/Al/Desktop/project9.docx')]

The glob expression 'project?.docx' will return 'project1.docx' or 'project5.docx', but it will

not return 'project10.docx', because ? only matches to one character so it will not match to

the two-character string '10'.

Finally, you can also combine the asterisk and question mark to create even more

complex glob expressions, like this:

/

>>> list(p.glob('*.?x?')

[WindowsPath('C:/Users/Al/Desktop/calc.exe'), WindowsPath('C:/Users/Al/

Desktop/foo.txt'),

--snip--

WindowsPath('C:/Users/Al/Desktop/zzz.txt')]

The glob expression '*.?x?' will return files with any name and any three-character

extension where the middle character is an 'x'.

By picking out files with specific attributes, the glob() method lets you easily specify

the files in a directory you want to perform some operation on. You can use a for loop to

iterate over the generator that glob() returns:

>>> p = Path('C:/Users/Al/Desktop')

>>> for textFilePathObj in p.glob('*.txt'):

... print(textFilePathObj) # Prints the Path object as a string.

... # Do something with the text file.

...

C:\Users\Al\Desktop\foo.txt

C:\Users\Al\Desktop\spam.txt

C:\Users\Al\Desktop\zzz.txt

If you want to perform some operation on every file in a directory, you can use either

os.listdir(p) or p.glob('*').

Checking Path Validity

Many Python functions will crash with an error if you supply them with a path that does

not exist. Luckily, Path objects have methods to check whether a given path exists and

whether it is a file or folder. Assuming that a variable p holds a Path object, you could

expect the following:

Calling p.exists() returns True if the path exists or returns False

Calling p.is_file() returns True if the path exists and is a file, or returns False

otherwise.

Calling p.is_dir() returns True if the path exists and is a directory, or returns False

otherwise.

>>> winDir = Path('C:/Windows')

>>> notExistsDir = Path('C:/This/Folder/Does/Not/Exist')

/

>>> calcFile = Path('C:/Windows

/System32/calc.exe')

>>> winDir.exists()

True

>>> winDir.is_dir()

True

>>> notExistsDir.exists()

False

>>> calcFile.is_file()

True

>>> calcFile.is_dir()

False

You can determine whether there is a DVD or flash drive currently attached to the

computer by checking for it with the exists() method. For instance, if I wanted to check

for a flash drive with the volume named D:\ on my Windows computer, I could do that

with the following:

>>> dDrive = Path('D:/')

>>> dDrive.exists()

False

Oops! It looks like I forgot to plug in my flash drive.

The older os.path module can accomplish the same task with the os.path.exists(path),

os.path.isfile(path), and os.path.isdir(path) functions, which act just like their Path function

counterparts. As of Python 3.6, these functions can accept Path objects as well as strings

of the file paths.

THE FILE READING/WRITING PROCESS

specify the location of files to read and write. The functions covered in the next few

sections will apply to plaintext files. Plaintext files contain only basic text characters and

do not include font, size, or color information. Text files with the .txt extension or Python

script files with the .py extension are examples of plaintext files. These can be opened

with Notepad or application. Your programs can easily

read the contents of plaintext files and treat them as an ordinary string value.

Binary files are all other file types, such as word processing documents, PDFs,

images, spreadsheets, and executable programs. If you open a binary file in Notepad or

TextEdit, it will look like scrambled nonsense, like in Figure 9-6.

/

Figure 9-6: The Windows calc.exe program opened in Notepad

Since every different type of binary file must be handled in its own way, this book

will not go into reading and writing raw binary files directly. Fortunately, many modules

make working with binary files easier you will explore one of them, the shelve module,

later in this chapter. The pathlib read_text() method returns a string of the full

contents of a text file. Its write_text() method creates a new text file (or overwrites an

existing one) with the string passed to it. Enter the following into the interactive shell:

>>> from pathlib import Path

>>> p = Path('spam.txt')

>>> p.write_text('Hello, world!')

13

>>> p.read_text()

'Hello, world!'

These method calls create a spam.txt file with the content 'Hello, world!'. The 13 that

write_text() returns indicates that 13 characters were written to the file. (You can often

disregard this information.) The read_text() call reads and returns the contents of our new

file as a string: 'Hello, world!'.

Keep in mind that these Path object methods only provide basic interactions with files.

The more common way of writing to a file involves using the open() function and file

objects. There are three steps to reading or writing files in Python:

1. Call the open() function to return a File object.

2. Call the read() or write() method on the File object.

3. Close the file by calling the close() method on the File object.

/

Opening Files with the open() Function

To open a file with the open() function, you pass it a string path indicating the file you

want to open; it can be either an absolute or relative path. The open() function returns a

File object.

Try it by creating a text file named hello.txt using Notepad or TextEdit. Type Hello,

world! as the content of this text file and save it in your user home folder. Then enter the

following into the interactive shell:

>>> helloFile = open(Path.home() / 'hello.txt')

The open() the

following into the interactive shell:

>>> helloFile = open('C:\\Users\\your_home_folder\\hello.txt')

instead:

>>> helloFile = open('/Users/your_home_folder/hello.txt')

Make sure to replace your_home_folder with your computer username. For example, my

username is Al 'C:\\Users\\Al\\hello.txt' on Windows. Note that the open()

function only accepts Path objects as of Python 3.6. In previous versions, you always

need to pass a string to open().

read mode

for short. When a file is opened in read mode, Python lets you only read data from the

way. Read mode is the default mode for files you

specify the mode by passing the string value 'r' as a second argument to open(). So

open('/Users/Al/hello.txt', 'r') and open('/Users/Al/hello.txt') do the same thing.

The call to open() returns a File object. A File object represents a file on your computer;

it is simply another type of value in Python, much like the lists and dictionaries

already familiar with. In the previous example, you stored the File object in the variable

helloFile. Now, whenever you want to read from or write to the file, you can do so by

calling methods on the File object in helloFile.

Reading the Contents of Files

Now that you have a File object, you can start reading from it. If you want to read the

entire contents of a file as a string value, use the File read() method.

/

continue with the hello.txt File object you stored in helloFile. Enter the following into the

interactive shell:

>>> helloContent = helloFile.read()

>>> helloContent

'Hello, world!'

If you think of the contents of a file as a single large string value, the read() method

returns the string that is stored in the file.

Alternatively, you can use the readlines() method to get a list of string values from the

file, one string for each line of text. For example, create a file named sonnet29.txt in the

same directory as hello.txt and write the following text in it:

When, in disgrace with fortune and men's eyes,

I all alone beweep my outcast state,

And trouble deaf heaven with my bootless cries,

And look upon myself and curse my fate,

Make sure to separate the four lines with line breaks. Then enter the following into

the interactive shell:

>>> sonnetFile = open(Path.home() / 'sonnet29.txt')

>>> sonnetFile.readlines()

[When, in disgrace with fortune and men's eyes,\n', ' I all alone beweep my

outcast state,\n', And trouble deaf heaven with my bootless cries,\n', And

look upon myself and curse my fate,']

Note that, except for the last line of the file, each of the string values ends with a

newline character \n. A list of strings is often easier to work with than a single large

string value.

Writing to Files

Python allows you to write content to a file in a way similar to how the print() function

You

mode, or write mode and append mode for short.

Write mode will overwrite the existing file and start from scratch, just like when you

'w' as the second argument to open() to

open the file in write mode. Append mode, on the other hand, will append text to the end

of the existing file. You can think of this as appending to a list in a variable, rather than

/

overwriting the variable altogether. Pass 'a' as the second argument to open() to open the

file in append mode.

If the filename passed to open() does not exist, both write and append mode will create

a new, blank file. After reading or writing a file, call the close() method before opening

the file again.

put these concepts together. Enter the following into the interactive shell:

>>> baconFile = open('bacon.txt', 'w')

>>> baconFile.write('Hello, world!\n')

13

>>> baconFile.close()

>>> baconFile = open('bacon.txt', 'a')

>>> baconFile.write('Bacon is not a vegetable.')

25

>>> baconFile.close()

>>> baconFile = open('bacon.txt')

>>> content = baconFile.read()

>>> baconFile.close()

>>> print(content)

Hello, world!

Bacon is not a vegetable.

First, we open bacon.txt bacon.txt yet, Python

creates one. Calling write() on the opened file and passing write() the string argument

'Hello, world! /n' writes the string to the file and returns the number of characters written,

including the newline. Then we close the file.

To add text to the existing contents of the file instead of replacing the string we just

wrote, we open the file in append mode. We write 'Bacon is not a vegetable.' to the file and

close it. Finally, to print the file contents to the screen, we open the file in its default read

mode, call read(), store the resulting File object in content, close the file, and print content.

Note that the write() method does not automatically add a newline character to the end

of the string like the print() function does. You will have to add this character yourself.

As of Python 3.6, you can also pass a Path object to the open() function instead of a

string for the filename.

SAVING VARIABLES WITH THE SHELVE MODULE

You can save variables in your Python programs to binary shelf files using the shelve

module. This way, your program can restore data to variables from the hard drive. The

/

shelve module will let you add Save and Open features to your program. For example, if

you ran a program and entered some configuration settings, you could save those settings

to a shelf file and then have the program load them the next time it is run.

Enter the following into the interactive shell:

>>> import shelve

>>> shelfFile = shelve.open('mydata')

>>> cats = ['Zophie', 'Pooka', 'Simon']

>>> shelfFile['cats'] = cats

>>> shelfFile.close()

To read and write data using the shelve module, you first import shelve. Call

shelve.open() and pass it a filename, and then store the returned shelf value in a variable.

You

call close() on the shelf value. Here, our shelf value is stored in shelfFile. We create a list

cats and write shelfFile['cats'] = cats to store the list in shelfFile as a value associated with the

key 'cats' (like in a dictionary). Then we call close() on shelfFile. Note that as of Python 3.7,

you have to pass the open() shelf method filenames as strings. You Path

object.

After running the previous code on Windows, you will see three new files in the

current working directory: mydata.bak, mydata.dat, and mydata.dir. On macOS, only a

single mydata.db file will be created.

These binary files contain the data you stored in your shelf. The format of these

binary files is not important; you only need to know what the shelve module does, not

how it does it. The module frees you from worrying about how to store your

data to a file.

Your programs can use the shelve module to later reopen and retrieve the data from

ed in read or write mode they can

do both once opened. Enter the following into the interactive shell:

>>> shelfFile = shelve.open('mydata')

>>> type(shelfFile)

<class 'shelve.DbfilenameShelf'>

>>> shelfFile['cats']

['Zophie', 'Pooka', 'Simon']

>>> shelfFile.close()

Here, we open the shelf files to check that our data was stored correctly. Entering

shelfFile['cats'] returns the same list that we stored earlier, so we know that the list is

/

correctly stored, and we call close().

Just like dictionaries, shelf values have keys() and values() methods that will return list-

like values of the keys and values in the shelf. Since these methods return list-like values

instead of true lists, you should pass them to the list() function to get them in list form.

Enter the following into the interactive shell:

>>> shelfFile = shelve.open('mydata')

>>> list(shelfFile.keys())

['cats']

>>> list(shelfFile.values())

[['Zophie', 'Pooka', 'Simon']]

>>> shelfFile.close()

TextEdit, but if you want to save data from your Python programs, use the shelve module.

SAVING VARIABLES WITH THE PPRINT.PFORMAT() FUNCTION

118 that the pprint.pprint()

pprint.pformat() function

will return this same text as a string instead of printing it. Not only is this string

formatted to be easy to read, but it is also syntactically correct Python code. Say you

have a dictionary stored in a variable and you want to save this variable and its contents

for future use. Using pprint.pformat() will give you a string that you can write to a .py file.

This file will be your very own module that you can import whenever you want to use

the variable stored in it.

For example, enter the following into the interactive shell:

>>> import pprint

>>> cats = [{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]

>>> pprint.pformat(cats)

"[{'desc': 'chubby', 'name': 'Zophie'}, {'desc': 'fluffy', 'name': 'Pooka'}]"

>>> fileObj = open('myCats.py', 'w')

>>> fileObj.write('cats = ' + pprint.pformat(cats) + '\n')

83

>>> fileObj.close()

Here, we import pprint to let us use pprint.pformat(). We have a list of dictionaries, stored

in a variable cats. To keep the list in cats available even after we close the shell, we use

/

pprint.pformat() to return it as a string. Once we have the data in cats

myCats.py.

The modules that an import statement imports are themselves just Python scripts.

When the string from pprint.pformat() is saved to a .py file, the file is a module that can be

imported just like any other.

And since Python scripts are themselves just text files with the .py file extension,

your Python programs can even generate other Python programs. You can then import

these files into scripts.

>>> import myCats

>>> myCats.cats

[{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]

>>> myCats.cats[0]

{'name': 'Zophie', 'desc': 'chubby'}

>>> myCats.cats[0]['name']

'Zophie'

The benefit of creating a .py file (as opposed to saving variables with the shelve

module) is that because it is a text file, the contents of the file can be read and modified

by anyone with a simple text editor. For most applications, however, saving data using

the shelve module is the preferred way to save variables to a file. Only basic data types

such as integers, floats, strings, lists, and dictionaries can be written to a file as simple

text. File objects, for example, cannot be encoded as text.

PROJECT: GENERATING RANDOM QUIZ FILES

trust the students not to cheat. like to randomize the order of questions so that

each quiz is unique, making it impossible for anyone to crib answers from anyone else.

Of course, doing this by hand would be a lengthy and boring affair. Fortunately, you

know some Python.

Here is what the program does:

1. Creates 35 different quizzes

2. Creates 50 multiple-choice questions for each quiz, in random order

3. Provides the correct answer and three random wrong answers for each question, in

random order

4. Writes the quizzes to 35 text files

/

5. Writes the answer keys to 35 text files

This means the code will need to do the following:

1. Store the states and their capitals in a dictionary

2. Call open(), write(), and close() for the quiz and answer key text files

3. Use random.shuffle() to randomize the order of the questions and multiple-choice

options

Step 1: Store the Quiz Data in a Dictionary

The first step is to create a skeleton script and fill it with your quiz data. Create a file

named randomQuizGenerator.py, and make it look like the following:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

import random

The quiz data. Keys are states and values are their capitals.

capitals = {'Alabama': 'Montgomery', 'Alaska': 'Juneau', 'Arizona': 'Phoenix',

'Arkansas': 'Little Rock', 'California': 'Sacramento', 'Colorado': 'Denver',

'Connecticut': 'Hartford', 'Delaware': 'Dover', 'Florida': 'Tallahassee',

'Georgia': 'Atlanta', 'Hawaii': 'Honolulu', 'Idaho': 'Boise', 'Illinois':

'Springfield', 'Indiana': 'Indianapolis', 'Iowa': 'Des Moines', 'Kansas':

'Topeka', 'Kentucky': 'Frankfort', 'Louisiana': 'Baton Rouge', 'Maine':

'Augusta', 'Maryland': 'Annapolis', 'Massachusetts': 'Boston', 'Michigan':

'Lansing', 'Minnesota': 'Saint Paul', 'Mississippi': 'Jackson', 'Missouri':

'Jefferson City', 'Montana': 'Helena', 'Nebraska': 'Lincoln', 'Nevada':

'Carson City', 'New Hampshire': 'Concord', 'New Jersey': 'Trenton', 'New

Mexico': 'Santa Fe', 'New York': 'Albany',

'North Carolina': 'Raleigh', 'North Dakota': 'Bismarck', 'Ohio': 'Columbus', 'Oklahoma': 'Oklahoma City',

'Oregon': 'Salem', 'Pennsylvania': 'Harrisburg', 'Rhode Island': 'Providence',

'South Carolina': 'Columbia', 'South Dakota': 'Pierre', 'Tennessee':

'Nashville', 'Texas': 'Austin', 'Utah': 'Salt Lake City', 'Vermont':

'Montpelier', 'Virginia': 'Richmond', 'Washington': 'Olympia', 'West

Virginia': 'Charleston', 'Wisconsin': 'Madison', 'Wyoming': 'Cheyenne'}

Generate 35 quiz files.

for quizNum in range(35):

TODO: Create the quiz and answer key files.

/

TODO: Write out the header for the quiz.

TODO: Shuffle the order of the states.

TODO: Loop through all 50 states, making a question for each.

to import the random module to make use of its functions. The capitals variable

contains a dictionary with US states as keys and their capitals as values. And since you

want to create 35 quizzes, the code that actually generates the quiz and answer key files

(marked with TODO comments for now) will go inside a for loop that loops 35 times .

(This number can be changed to generate any number of quiz files.)

Step 2: Create the Quiz File and Shuffle the Question Order

TODOs.

The code in the loop will be repeated 35 times once for each quiz so you have to

ctual quiz

file. It needs to have a unique filename and should also have some kind of standard

header in it, with places for the student to fill in a name, date, and class period. Then

used later to create

the questions and answers for the quiz.

Add the following lines of code to randomQuizGenerator.py:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip--

Generate 35 quiz files.

for quizNum in range(35):

Create the quiz and answer key files.

quizFile = open(f'capitalsquiz{quizNum + 1}.txt', 'w')

answerKeyFile = open(f'capitalsquiz_answers{quizNum + 1}.txt', 'w')

Write out the header for the quiz.

quizFile.write('Name:\n\nDate:\n\nPeriod:\n\n')

quizFile.write((' ' * 20) + f'State Capitals Quiz (Form{quizNum + 1})')

quizFile.write('\n\n')

/

Shuffle the order of the states.

states = list(capitals.keys())

random.shuffle(states)

TODO: Loop through all 50 states, making a question for each.

The filenames for the quizzes will be capitalsquiz<N>.txt, where <N> is a unique

number for the quiz that comes from quizNum, the for counter. The answer key for

capitalsquiz<N>.txt will be stored in a text file named capitalsquiz_answers<N>.txt.

Each time through the loop, the {quizNum + 1} placeholder in f'capitalsquiz{quizNum + 1}.txt'

and f'capitalsquiz_answers{quizNum + 1}.txt' will be replaced by the unique number, so the

first quiz and answer key created will be capitalsquiz1.txt and capitalsquiz_answers1.txt.

These files will be created with calls to the open() function at and , with 'w' as the

second argument to open them in write mode.

The write() statements at create a quiz header for the student to fill out. Finally, a

randomized list of US states is created with the help of the random.shuffle() function ,

which randomly reorders the values in any list that is passed to it.

Step 3: Create the Answer Options

Now you need to generate the answer options for each question, which will be multiple

choice from A to D. need to create another for loop this one to generate the

content for each of the 50 questions on the quiz. Then there will be a third for loop nested

inside to generate the multiple-choice options for each question. Make your code look

like the following:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip--

Loop through all 50 states, making a question for each.

for questionNum in range(50):

Get right and wrong answers.

correctAnswer = capitals[states[questionNum]]

wrongAnswers = list(capitals.values())

del wrongAnswers[wrongAnswers.index(correctAnswer)]

wrongAnswers = random.sample(wrongAnswers, 3)

/

answerOptions = wrongAnswers + [correctAnswer]

random.shuffle(answerOptions)

TODO: Write the question and answer options to the quiz file.

TODO: Write the answer key to a file.

The correct answer is easy to get capitals dictionary .

This loop will loop through the states in the shuffled states list, from states[0] to states[49],

find each state in capitals, and store that corresponding capital in correctAnswer.

The list of possible wrong answers is trickier. You can get it by duplicating all the

values in the capitals dictionary , deleting the correct answer , and selecting three

random values from this list . The random.sample() function makes it easy to do this

selection. Its first argument is the list you want to select from; the second argument is the

number of values you want to select. The full list of answer options is the combination of

these three wrong answers with the correct answers . Finally, the answers need to be

randomized

Step 4: Write Content to the Quiz and Answer Key Files

All that is left is to write the question to the quiz file and the answer to the answer key

file. Make your code look like the following:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip--

Loop through all 50 states, making a question for each.

for questionNum in range(50):

--snip--

Write the question and the answer options to the quiz file.

quizFile.write(f'{questionNum + 1}. What is the capital of

{states[questionNum]}?\n')

for i in range(4):

quizFile.write(f" {'ABCD'[i]}. { answerOptions[i]}\n")

quizFile.write('\n')

/

Write the answer key to a file.

answerKeyFile.write(f"{questionNum + 1}.

{'ABCD'[answerOptions.index(correctAnswer)]}")

quizFile.close()

answerKeyFile.close()

A for loop that goes through integers 0 to 3 will write the answer options in the

answerOptions list . The expression 'ABCD'[i] at treats the string 'ABCD' as an array and

will evaluate to 'A','B', 'C', and then 'D' on each respective iteration through the loop.

In the final line , the expression answerOptions.index(correctAnswer) will find the integer

index of the correct answer in the randomly ordered answer options, and

'ABCD'[answerOptions.index(correctAnswer)] will evaluate t

written to the answer key file.

After you run the program, this is how your capitalsquiz1.txt file will look, though of

course your questions and answer options may be different from those shown here,

depending on the outcome of your random.shuffle() calls:

Name:

Date:

Period:

State Capitals Quiz (Form 1)

1. What is the capital of West Virginia?

A. Hartford

B. Santa Fe

C. Harrisburg

D. Charleston

2. What is the capital of Colorado?

A. Raleigh

B. Harrisburg

C. Denver

D. Lincoln

--snip--

The corresponding capitalsquiz_answers1.txt text file will look like this:

/

1. D

2. C

3. A

4. C

--snip--

PROJECT: UPDATABLE MULTI-CLIPBOARD

- shelve

module. The user will now be able to save new strings to load to the clipboard without

having to modify the source code. name this new program mcb.pyw

- .pyw

show a Terminal window when it runs this program. (See Appendix B for more details.)

The program will save each piece of clipboard text under a keyword. For example,

when you run py mcb.pyw save spam, the current contents of the clipboard will be saved

with the keyword spam. This text can later be loaded to the clipboard again by running

py mcb.pyw spam. And if the user forgets what keywords they have, they can run py

mcb.pyw list to copy a list of all keywords to the clipboard.

1. The command line argument for the keyword is checked.

2. If the argument is save, then the clipboard contents are saved to the keyword.

3. If the argument is list, then all the keywords are copied to the clipboard.

4. Otherwise, the text for the keyword is copied to the clipboard.

This means the code will need to do the following:

1. Read the command line arguments from sys.argv.

2. Read and write to the clipboard.

3. Save and load to a shelf file.

If you use Windows, you can easily run this script from the Run... window by

creating a batch file named mcb.bat with the following content:

@pyw.exe C:\Python34\mcb.pyw %*

Step 1: Comments and Shelf Setup

code look like the following:

/

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

Usage: py.exe mcb.pyw save <keyword> - Saves clipboard to keyword.

py.exe mcb.pyw <keyword> - Loads keyword to clipboard.

py.exe mcb.pyw list - Loads all keywords to clipboard.

import shelve, pyperclip, sys

mcbShelf = shelve.open('mcb')

TODO: Save clipboard content.

TODO: List keywords and load content.

mcbShelf.close()

common practice to put general usage information in comments at the top of the

file . If you ever forget how to run your script, you can always look at these comments

for a reminder. Then you import your modules . Copying and pasting will require the

pyperclip module, and reading the command line arguments will require the sys module.

The shelve module will also come in handy: Whenever the user wants to save a new piece

ur program. The

shelf file will be named with the prefix mcb .

Step 2: Save Clipboard Content with a Keyword

The program does different things depending on whether the user wants to save text to a

keyword, load text into the clipboard, or list all the existing keywords. deal with

that first case. Make your code look like the following:

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

--snip--

Save clipboard content.

if len(sys.argv) == 3 and sys.argv[1].lower() == 'save':

mcbShelf[sys.argv[2]] = pyperclip.paste()

elif len(sys.argv) == 2:

TODO: List keywords and load content.

/

mcbShelf.close()

If the first command line argument (which will always be at index 1 of the sys.argv list)

is 'save' , the second command line argument is the keyword for the current content of

the clipboard. The keyword will be used as the key for mcbShelf, and the value will be the

text currently on the clipboard .

If there is only one command line argument, you will assume it is either 'list' or a

keyword to load content onto the clipboard. You will implement that code later. For now,

just put a TODO comment there .

Finally, implement the two remaining cases: the user wants to load clipboard text in

from a keyword, or they want a list of all available keywords. Make your code look like

the following:

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

--snip--

Save clipboard content.

if len(sys.argv) == 3 and sys.argv[1].lower() == 'save':

mcbShelf[sys.argv[2]] = pyperclip.paste()

elif len(sys.argv) == 2:

List keywords and load content.

if sys.argv[1].lower() == 'list':

pyperclip.copy(str(list(mcbShelf.keys())))

elif sys.argv[1] in mcbShelf:

pyperclip.copy(mcbShelf[sys.argv[1]])

mcbShelf.close()

If there is only one command line argument, first check whether 'list' . If so,

a string representation of the list of shelf keys will be copied to the clipboard . The user

can paste this list into an open text editor to read it.

Otherwise, you can assume the command line argument is a keyword. If this keyword

exists in the mcbShelf shelf as a key, you can load the value onto the clipboard .

And it! Launching this program has different steps depending on what

operating system your computer uses. See Appendix B for details.

/

Recall the password locker program you created in Chapter 6 that stored the

passwords in a dictionary. Updating the passwords required changing the source code of

source code to update their software. Also, every time you modify the source code to a

program, you run the risk of accidentally introducing new bugs. By storing the data for a

program in a different place than the code, you can make your programs easier for others

to use and more resistant to bugs.

SUMMARY

Files are organized into folders (also called directories), and a path describes the location

of a file. Every program running on your computer has a current working directory,

which allows you to specify file paths relative to the current location instead of always

typing the full (or absolute) path. The pathlib and os.path modules have many functions for

manipulating file paths.

Your programs can also directly interact with the contents of text files. The open()

function can open these files to read in their contents as one large string (with the read()

method) or as a list of strings (with the readlines() method). The open() function can open

files in write or append mode to create new text files or add to existing text files,

respectively.

In previous chapters, you used the clipboard as a way of getting large amounts of text

into a program, rather than typing it all in. Now you can have your programs read files

directly from the hard drive, which is a big improvement, since files are much less

volatile than the clipboard.

In the next chapter, you will learn how to handle the files themselves, by copying

them, deleting them, renaming them, moving them, and more.

PRACTICE QUESTIONS

1. What is a relative path relative to?

2. What does an absolute path start with?

3. What does Path('C:/Users') / 'Al' evaluate to on Windows?

4. What does 'C:/Users' / 'Al' evaluate to on Windows?

5. What do the os.getcwd() and os.chdir() functions do?

6. What are the . and .. folders?

7. In C:\bacon\eggs\spam.txt, which part is the dir name, and which part is the base

name?

8. open() function?

9. What happens if an existing file is opened in write mode?

10. What is the difference between the read() and readlines() methods?

11. What data structure does a shelf value resemble?

PRACTICE PROJECTS

For practice, design and write the following programs.

Extending the Multi-Clipboard

Extend the multi-clipboard program in this chapter so that it has a delete <keyword>

command line argument that will delete a keyword from the shelf. Then add a delete

command line argument that will delete all keywords.

Mad Libs

Create a Mad Libs program that reads in text files and lets the user add their own text

anywhere the word ADJECTIVE, NOUN, ADVERB, or VERB appears in the text file. For

example, a text file may look like this:

The ADJECTIVE panda walked to the NOUN and then VERB. A nearby NOUN was

unaffected by these events.

The program would find these occurrences and prompt the user to replace them.

Enter an adjective:

silly

Enter a noun:

chandelier

Enter a verb:

screamed

Enter a noun:

pickup truck

The following text file would then be created:

The silly panda walked to the chandelier and then screamed. A nearby pickup

truck was unaffected by these events.

/

ORGANIZING FILES

Making copies of all PDF files (and only the PDF files) in every subfolder of a

folder

Removing the leading zeros in the filenames for every file in a folder of hundreds

of files named spam001.txt, spam002.txt, spam003.txt, and so on

Compressing the contents of several folders into one ZIP file (which could be a

simple backup system)

All this boring stuff is just begging to be automated in Python. By programming your

computer to do these tasks, you can transform it into a quick-working file clerk who

never makes mistakes.

As you begin working with files, you may find it helpful to be able to quickly see

what the extension (.txt, .pdf, .jpg, and so on) of a file is. With macOS and Linux, your

file browser most likely shows extensions automatically. With Windows, file extensions

may be hidden by default. To show extensions, go to Start Control Panel

Appearance and Personalization Folder Options. On the View tab, under Advanced

Settings, uncheck the Hide extensions for known file types checkbox.

THE SHUTIL MODULE

The shutil (or shell utilities) module has functions to let you copy, move, rename, and

delete files in your Python programs. To use the shutil functions, you will first need to use

import shutil.

Copying Files and Folders

The shutil module provides functions for copying files, as well as entire folders.

Calling shutil.copy(source, destination) will copy the file at the path source to the folder at

the path destination. (Both source and destination can be strings or Path objects.) If destination

is a filename, it will be used as the new name of the copied file. This function returns a

string or Path object of the copied file.

Enter the following into the interactive shell to see how shutil.copy() works:

>>> import shutil, os

>>> from pathlib import Path

>>> p = Path.home()

>>> shutil.copy(p / 'spam.txt', p / 'some_folder')

'C:\\Users\\Al\\some_folder\\spam.txt'

/

/

>>> shutil.copy(p / 'eggs.txt', p / 'some_folder/eggs2.txt')

WindowsPath('C:/Users/Al/some_folder/eggs2.txt')

The first shutil.copy() call copies the file at C:\Users\Al\spam.txt to the folder

C:\Users\Al\some_folder. The return value is the path of the newly copied file. Note that

since a folder was specified as the destination , the original spam.txt filename is used

for the new, copied filename. The second shutil.copy() call also copies the file at

C:\Users\Al\eggs.txt to the folder C:\Users\Al\some_folder but gives the copied file the

name eggs2.txt.

While shutil.copy() will copy a single file, shutil.copytree() will copy an entire folder and

every folder and file contained in it. Calling shutil.copytree(source, destination) will copy the

folder at the path source, along with all of its files and subfolders, to the folder at the path

destination. The source and destination parameters are both strings. The function returns a

string of the path of the copied folder.

Enter the following into the interactive shell:

>>> import shutil, os

>>> from pathlib import Path

>>> p = Path.home()

>>> shutil.copytree(p / 'spam', p / 'spam_backup')

WindowsPath('C:/Users/Al/spam_backup')

The shutil.copytree() call creates a new folder named spam_backup with the same

content as the original spam folder. You have now safely backed up your precious,

precious spam.

Moving and Renaming Files and Folders

Calling shutil.move(source, destination) will move the file or folder at the path source to the

path destination and will return a string of the absolute path of the new location.

If destination points to a folder, the source file gets moved into destination and keeps its

current filename. For example, enter the following into the interactive shell:

>>> import shutil

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')

'C:\\eggs\\bacon.txt'

Assuming a folder named eggs already exists in the C:\ directory, this shutil.move() call

C:\bacon.txt into the folder C:\eggs

/

If there had been a bacon.txt file already in C:\eggs, it would have been overwritten.

Since easy to accidentally overwrite files in this way, you should take some care

when using move().

The destination path can also specify a filename. In the following example, the source

file is moved and renamed.

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs\\new_bacon.txt')

'C:\\eggs\\new_bacon.txt'

C:\bacon.txt into the folder C:\eggs

rename that bacon.txt file to new_bacon.txt

Both of the previous examples worked under the assumption that there was a folder

eggs in the C:\ directory. But if there is no eggs folder, then move() will rename bacon.txt

to a file named eggs.

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')

'C:\\eggs'

Here, move() eggs in the C:\ directory and so assumes that

destination must be specifying a filename, not a folder. So the bacon.txt text file is

renamed to eggs (a text file without the .txt file extension) probably not what you

wanted! This can be a tough-to-spot bug in your programs since the move() call can

happily do something that might be quite different from what you were expecting. This

is yet another reason to be careful when using move().

Finally, the folders that make up the destination must already exist, or else Python

will throw an exception. Enter the following into the interactive shell:

>>> shutil.move('spam.txt', 'c:\\does_not_exist\\eggs\\ham')

Traceback (most recent call last):

--snip--

FileNotFoundError: [Errno 2] No such file or directory: 'c:\\does_not_exist\\

eggs\\ham'

Python looks for eggs and ham inside the directory does_not_exist

spam.txt to the path you specified.

Permanently Deleting Files and Folders

You can delete a single file or a single empty folder with functions in the os module,

whereas to delete a folder and all of its contents, you use the shutil module.

/

Calling os.unlink(path) will delete the file at path.

Calling os.rmdir(path) will delete the folder at path. This folder must be empty of any

files or folders.

Calling shutil.rmtree(path) will remove the folder at path, and all files and folders it

contains will also be deleted.

Be careful when using these functions in your programs! often a good idea to first

run your program with these calls commented out and with print() calls added to show the

files that would be deleted. Here is a Python program that was intended to delete files

that have the .txt file extension but has a typo (highlighted in bold) that causes it to delete

.rxt files instead:

import os

from pathlib import Path

for filename in Path.home().glob('*.rxt'):

os.unlink(filename)

If you had any important files ending with .rxt, they would have been accidentally,

permanently deleted. Instead, you should have first run the program like this:

import os

from pathlib import Path

for filename in Path.home().glob('*.rxt'):

#os.unlink(filename)

print(filename)

Now the os.unlink() call is commented, so Python ignores it. Instead, you will print the

filename of the file that would have been deleted. Running this version of the program

first will show you that accidentally told the program to delete .rxt files instead of

.txt files.

Once you are certain the program works as intended, delete the print(filename) line and

uncomment the os.unlink(filename) line. Then run the program again to actually delete the

files.

Safe Deletes with the send2trash Module

-in shutil.rmtree() function irreversibly deletes files and folders, it can

be dangerous to use. A much better way to delete files and folders is with the third-party

send2trash module. You can install this module by running pip install --user send2trash from a

Terminal window. (See Appendix A for a more in-depth explanation of how to install third-

party modules.)

/

Using send2trash will

send folders and files to your compute

deleting them. If a bug in your program deletes something with send2trash

intend to delete, you can later restore it from the recycle bin.

After you have installed send2trash, enter the following into the interactive shell:

>>> import send2trash

>>> baconFile = open('bacon.txt', 'a') # creates the file

>>> baconFile.write('Bacon is not a vegetable.')

25

>>> baconFile.close()

>>> send2trash.send2trash('bacon.txt')

In general, you should always use the send2trash.send2trash() function to delete files and

folders. But while sending files to the recycle bin lets you recover them later, it will not

free up disk space like permanently deleting them does. If you want your program to free

up disk space, use the os and shutil functions for deleting files and folders. Note that the

send2trash() function can only send files to the recycle bin; it cannot pull files out of it.

WALKING A DIRECTORY TREE

Say you want to rename every file in some folder and also every file in every subfolder

of that folder. That is, you want to walk through the directory tree, touching each file as

you go. Writing a program to do this could get tricky; fortunately, Python provides a

function to handle this process for you.

look at the C:\delicious folder with its contents, shown in Figure 10-1.

/

Figure 10-1: An example folder that contains three folders and four files

Here is an example program that uses the os.walk() function on the directory tree from

Figure 10-1:

import os

for folderName, subfolders, filenames in os.walk('C:\\delicious'):

print('The current folder is ' + folderName)

for subfolder in subfolders:

print('SUBFOLDER OF ' + folderName + ': ' + subfolder)

for filename in filenames:

print('FILE INSIDE ' + folderName + ': '+ filename)

print('')

The os.walk() function is passed a single string value: the path of a folder. You can use

os.walk() in a for loop statement to walk a directory tree, much like how you can use the

range() function to walk over a range of numbers. Unlike range(), the os.walk() function will

return three values on each iteration through the loop:

A string of the current folder

A list of strings of the folders in the current folder

/

A list of strings of the files in the current folder

(By current folder, I mean the folder for the current iteration of the for loop. The

current working directory of the program is not changed by os.walk().)

Just like you can choose the variable name i in the code for i in range(10):, you can also

choose the variable names for the three values listed earlier. I usually use the names

foldername, subfolders, and filenames.

When you run this program, it will output the following:

The current folder is C:\delicious

SUBFOLDER OF C:\delicious: cats

SUBFOLDER OF C:\delicious: walnut

FILE INSIDE C:\delicious: spam.txt

The current folder is C:\delicious\cats

FILE INSIDE C:\delicious\cats: catnames.txt

FILE INSIDE C:\delicious\cats: zophie.jpg

The current folder is C:\delicious\walnut

SUBFOLDER OF C:\delicious\walnut: waffles

The current folder is C:\delicious\walnut\waffles

FILE INSIDE C:\delicious\walnut\waffles: butter.txt.

Since os.walk() returns lists of strings for the subfolder and filename variables, you can

use these lists in their own for loops. Replace the print() function calls with your own

for loops.)

COMPRESSING FILES WITH THE ZIPFILE MODULE

You may be familiar with ZIP files (with the .zip file extension), which can hold the

compressed contents of many other files. Compressing a file reduces its size, which is

useful when transferring it over the internet. And since a ZIP file can also contain

multiple files and subfolders, a handy way to package several files into one. This

single file, called an archive file, can then be, say, attached to an email.

Your Python programs can create and open (or extract) ZIP files using functions in

the zipfile module. Say you have a ZIP file named example.zip that has the contents

shown in Figure 10-2.

/

Figure 10-2: The contents of example.zip

You can download this ZIP file from https://nostarch.com/automatestuff2/ or just

follow along using a ZIP file already on your computer.

Reading ZIP Files

To read the contents of a ZIP file, first you must create a ZipFile object (note the capital

letters Z and F). ZipFile objects are conceptually similar to the File objects you saw

returned by the open() function in the previous chapter: they are values through which the

program interacts with the file. To create a ZipFile object, call the zipfile.ZipFile() function,

passing it a string of the .ZIP filename. Note that zipfile is the name of the Python

module, and ZipFile() is the name of the function.

For example, enter the following into the interactive shell:

>>> import zipfile, os

>>> from pathlib import Path

>>> p = Path.home()

>>> exampleZip = zipfile.ZipFile(p / 'example.zip')

>>> exampleZip.namelist()

['spam.txt', 'cats/', 'cats/catnames.txt', 'cats/zophie.jpg']

>>> spamInfo = exampleZip.getinfo('spam.txt')

>>> spamInfo.file_size

13908

>>> spamInfo.compress_size

3828

>>> f'Compressed file is {round(spamInfo.file_size / spamInfo

.compress_size, 2)}x smaller!'

)

'Compressed file is 3.63x smaller!'

>>> exampleZip.close()

/

A ZipFile object has a namelist() method that returns a list of strings for all the files and

folders contained in the ZIP file. These strings can be passed to the getinfo() ZipFile

method to return a ZipInfo object about that particular file. ZipInfo objects have their own

attributes, such as file_size and compress_size in bytes, which hold integers of the original

file size and compressed file size, respectively. While a ZipFile object represents an entire

archive file, a ZipInfo object holds useful information about a single file in the archive.

The command at calculates how efficiently example.zip is compressed by dividing

the original file size by the compressed file size and prints this information.

Extracting from ZIP Files

The extractall() method for ZipFile objects extracts all the files and folders from a ZIP file

into the current working directory.

>>> import zipfile, os

>>> from pathlib import Path

>>> p = Path.home()

>>> exampleZip = zipfile.ZipFile(p / 'example.zip')

>>> exampleZip.extractall()

>>> exampleZip.close()

After running this code, the contents of example.zip will be extracted to C:\.

Optionally, you can pass a folder name to extractall() to have it extract the files into a

folder other than the current working directory. If the folder passed to the extractall()

method does not exist, it will be created. For instance, if you replaced the call at with

exampleZip.extractall('C:\\delicious'), the code would extract the files from example.zip into a

newly created C:\delicious folder.

The extract() method for ZipFile objects will extract a single file from the ZIP file.

Continue the interactive shell example:

>>> exampleZip.extract('spam.txt')

'C:\\spam.txt'

>>> exampleZip.extract('spam.txt', 'C:\\some\\new\\folders')

'C:\\some\\new\\folders\\spam.txt'

>>> exampleZip.close()

The string you pass to extract() must match one of the strings in the list returned by

namelist(). Optionally, you can pass a second argument to extract() to extract the file into a

folder other than the current working directory. If this second argument is a folder that

/

folder. The value that extract() returns is the

absolute path to which the file was extracted.

Creating and Adding to ZIP Files

To create your own compressed ZIP files, you must open the ZipFile object in write mode

by passing 'w' as the second argument. (This is similar to opening a text file in write

mode by passing 'w' to the open() function.)

When you pass a path to the write() method of a ZipFile object, Python will compress

the file at that path and add it into the ZIP file. The write()

string of the filename to add. The second argument is the compression type parameter,

which tells the computer what algorithm it should use to compress the files; you can

always just set this value to zipfile.ZIP_DEFLATED. (This specifies the deflate compression

algorithm, which works well on all types of data.) Enter the following into the interactive

shell:

>>> import zipfile

>>> newZip = zipfile.ZipFile('new.zip', 'w')

>>> newZip.write('spam.txt', compress_type=zipfile.ZIP_DEFLATED)

>>> newZip.close()

This code will create a new ZIP file named new.zip that has the compressed contents

of spam.txt.

Keep in mind that, just as with writing to files, write mode will erase all existing

contents of a ZIP file. If you want to simply add files to an existing ZIP file, pass 'a' as

the second argument to zipfile.ZipFile() to open the ZIP file in append mode.

PROJECT: RENAMING FILES WITH AMERICAN-STYLE DATES TO

EUROPEAN-STYLE DATES

Say your boss emails you thousands of files with American-style dates (MM-DD-

YYYY) in their names and needs them renamed to European-style dates (DD-MM-

YYYY). This boring task could take all day to do by hand! write a program to do it

instead.

Her

1. It searches all the filenames in the current working directory for American-style

dates.

2. When one is found, it renames the file with the month and day swapped to make it

European-style.

/

This means the code will need to do the following:

1. Create a regex that can identify the text pattern of American-style dates.

2. Call os.listdir() to find all the files in the working directory.

3. Loop over each filename, using the regex to check whether it has a date.

4. If it has a date, rename the file with shutil.move().

For this project, open a new file editor window and save your code as

renameDates.py.

Step 1: Create a Regex for American-Style Dates

The first part of the program will need to import the necessary modules and create a

regex that can identify MM-DD-YYYY dates. The to-do comments will remind you

left to write in this program. Typing them as TODO makes them easy to find using

CTRL-F find feature. Make your code look like the following:

#! python3

renameDates.py - Renames filenames with American MM-DD-YYYY date format

to European DD-MM-YYYY.

import shutil, os, re

Create a regex that matches files with the American date format.

datePattern = re.compile(r"""^(.*?) # all text before the date

((0|1)?\d)- # one or two digits for the month

((0|1|2|3)?\d)- # one or two digits for the day

((19|20)\d\d) # four digits for the year

(.*?)$ # all text after the date

""", re.VERBOSE)

TODO: Loop over the files in the working directory.

TODO: Skip files without a date.

TODO: Get the different parts of the filename.

TODO: Form the European-style filename.

TODO: Get the full, absolute file paths.

/

TODO: Rename the files.

From this chapter, you know the shutil.move() function can be used to rename files: its

arguments are the name of the file to rename and the new filename. Because this

function exists in the shutil module, you must import that module .

But before renaming the files, you need to identify which files you want to rename.

Filenames with dates such as spam4-4-1984.txt and 01-03-2014eggs.zip should be

renamed, while filenames without dates such as littlebrother.epub can be ignored.

You can use a regular expression to identify this pattern. After importing the re

module at the top, call re.compile() to create a Regex object . Passing re.VERBOSE for the

second argument will allow whitespace and comments in the regex string to make it

more readable.

The regular expression string begins with ^(.*?) to match any text at the beginning of

the filename that might come before the date. The ((0|1)?\d) group matches the month.

The first digit can be either 0 or 1, so the regex matches 12 for December but also 02 for

February. This digit is also optional so that the month can be 04 or 4 for April. The group

for the day is ((0|1|2|3)?\d) and follows similar logic; 3, 03, and 31 are all valid numbers for

days. (Yes, this regex will accept some invalid dates such as 4-31-2014, 2-29-2013, and 0-15-

2014. Dates have a lot of thorny special cases that can be easy to miss. But for simplicity,

the regex in this program works well enough.)

While 1885 is a valid year, you can just look for years in the 20th or 21st century.

This will keep your program from accidentally matching nondate filenames with a date-

like format, such as 10-10-1000.txt.

The (.*?)$ part of the regex will match any text that comes after the date.

Step 2: Identify the Date Parts from the Filenames

Next, the program will have to loop over the list of filename strings returned from

os.listdir() and match them against the regex. Any files that do not have a date in them

should be skipped. For filenames that have a date, the matched text will be stored in

several variables. Fill in the first three TODOs in your program with the following code:

#! python3

renameDates.py - Renames filenames with American MM-DD-YYYY date format

to European DD-MM-YYYY.

--snip--

Loop over the files in the working directory.

/

for amerFilename in os.listdir('.'):

mo = datePattern.search(amerFilename)

Skip files without a date.

if mo == None:

continue

Get the different parts of the filename.

beforePart = mo.group(1)

monthPart = mo.group(2)

dayPart = mo.group(4)

yearPart = mo.group(6)

afterPart = mo.group(8)

--snip--

If the Match object returned from the search() method is None , then the filename in

amerFilename does not match the regular expression. The continue statement will skip the

rest of the loop and move on to the next filename.

Otherwise, the various strings matched in the regular expression groups are stored in

variables named beforePart, monthPart, dayPart, yearPart, and afterPart . The strings in these

variables will be used to form the European-style filename in the next step.

To keep the group numbers straight, try reading the regex from the beginning, and

count up each time you encounter an opening parenthesis. Without thinking about the

code, just write an outline of the regular expression. This can help you visualize the

groups. an example:

datePattern = re.compile(r"""^(1) # all text before the date

(2 (3))- # one or two digits for the month

(4 (5))- # one or two digits for the day

(6 (7)) # four digits for the year

(8)$ # all text after the date

""", re.VERBOSE)

Here, the numbers 1 through 8 represent the groups in the regular expression you

wrote. Making an outline of the regular expression, with just the parentheses and group

numbers, can give you a clearer understanding of your regex before you move on with

the rest of the program.

Step 3: Form the New Filename and Rename the Files

/

As the final step, concatenate the strings in the variables made in the previous step with

the European-style date: the date comes before the month. Fill in the three remaining

TODOs in your program with the following code:

#! python3

renameDates.py - Renames filenames with American MM-DD-YYYY date format # to European DD- MM-

YYYY.

--snip--

Form the European-style filename.

euroFilename = beforePart + dayPart + '-' + monthPart + '-' + yearPart +

afterPart

Get the full, absolute file paths.

absWorkingDir = os.path.abspath('.')

amerFilename = os.path.join(absWorkingDir, amerFilename)

euroFilename = os.path.join(absWorkingDir, euroFilename)

Rename the files.

print(f'Renaming "{amerFilename}" to "{euroFilename}"...')

#shutil.move(amerFilename, euroFilename) # uncomment after testing

Store the concatenated string in a variable named euroFilename . Then, pass the

original filename in amerFilename and the new euroFilename variable to the shutil.move()

function to rename the file .

This program has the shutil.move() call commented out and instead prints the filenames

that will be renamed . Running the program like this first can let you double-check that

the files are renamed correctly. Then you can uncomment the shutil.move() call and run the

program again to actually rename the files.

Ideas for Similar Programs

There are many other reasons you might want to rename a large number of files.

To add a prefix to the start of the filename, such as adding spam_ to rename eggs.txt

to spam_eggs.txt

To change filenames with European-style dates to American-style dates

To remove the zeros from files such as spam0042.txt

/

PROJECT: BACKING UP A FOLDER INTO A ZIP FILE

C:\AlsPythonBook.

folder. like to keep different versions, so you want

the ZIP filename to increment each time it is made; for example,

AlsPythonBook_1.zip, AlsPythonBook_2.zip, AlsPythonBook_3.zip, and so on. You could

do this by hand, but it is rather annoying, and you might accidentally misnumber the ZIP

would be much simpler to run a program that does this boring task for

you.

For this project, open a new file editor window and save it as backupToZip.py.

The code for this program will be placed into a function named backupToZip(). This will

make it easy to copy and paste the function into other Python programs that need this

functionality. At the end of the program, the function will be called to perform the

backup. Make your program look like this:

#! python3

backupToZip.py - Copies an entire folder and its contents into

a ZIP file whose filename increments.

import zipfile, os

def backupToZip(folder):

Back up the entire contents of "folder" into a ZIP file.

folder = os.path.abspath(folder) # make sure folder is absolute

Figure out the filename this code should use based on

what files already exist.

number = 1

while True:

zipFilename = os.path.basename(folder) + '_' + str(number) + '.zip'

if not os.path.exists(zipFilename):

break

number = number + 1

TODO: Create the ZIP file.

/

TODO: Walk the entire folder tree and compress the files in each folder.

print('Done.')

backupToZip('C:\\delicious')

Do the basics first: add the shebang (#!) line, describe what the program does, and

import the zipfile and os modules .

Define a backupToZip() function that takes just one parameter, folder. This parameter is

a string path to the folder whose contents should be backed up. The function will

determine what filename to use for the ZIP file it will create; then the function will create

the file, walk the folder folder, and add each of the subfolders and files to the ZIP file.

Write TODO comments for these steps in the source code to remind yourself to do them

later .

The first part, naming the ZIP file, uses the base name of the absolute path of folder. If

the folder being backed up is C:\delicious delicious_N.zip,

where N = 1 is the first time you run the program, N = 2 is the second time, and so on.

You can determine what N should be by checking whether delicious_1.zip already

exists, then checking whether delicious_2.zip already exists, and so on. Use a variable

named number for N , and keep incrementing it inside the loop that calls os.path.exists() to

check whether the file exists . The first nonexistent filename found will cause the loop

to break, since it will have found the filename of the new zip.

Step 2: Create the New ZIP File

Next create the ZIP file. Make your program look like the following:

#! python3

backupToZip.py - Copies an entire folder and its contents into

a ZIP file whose filename increments.

--snip--

while True:

zipFilename = os.path.basename(folder) + '_' + str(number) + '.zip'

if not os.path.exists(zipFilename):

break

number = number + 1

Create the ZIP file.

print(f'Creating {zipFilename}...')

backupZip = zipfile.ZipFile(zipFilename, 'w')

/

TODO: Walk the entire folder tree and compress the files in each folder.

print('Done.')

backupToZip('C:\\delicious')

Now that the new ZIP name is stored in the zipFilename variable, you can call

zipfile.ZipFile() to actually create the ZIP file . Be sure to pass 'w' as the second argument

so that the ZIP file is opened in write mode.

Step 3: Walk the Directory Tree and Add to the ZIP File

Now you need to use the os.walk() function to do the work of listing every file in the

folder and its subfolders. Make your program look like the following:

#! python3

backupToZip.py - Copies an entire folder and its contents into

a ZIP file whose filename increments.

--snip--

Walk the entire folder tree and compress the files in each folder.

for foldername, subfolders, filenames in os.walk(folder):

print(f'Adding files in {foldername}...')

Add the current folder to the ZIP file.

backupZip.write(foldername)

Add all the files in this folder to the ZIP file.

for filename in filenames:

newBase = os.path.basename(folder) + '_'

if filename.startswith(newBase) and filename.endswith('.zip'):

continue # don't back up the backup ZIP files

backupZip.write(os.path.join(foldername, filename))

backupZip.close()

print('Done.')

backupToZip('C:\\delicious')

You can use os.walk() in a for loop

current folder name, the subfolders in that folder, and the filenames in that folder.

/

In the for loop, the folder is added to the ZIP file . The nested for loop can go

through each filename in the filenames list . Each of these is added to the ZIP file,

except for previously made backup ZIPs.

When you run this program, it will produce output that will look something like this:

Creating delicious_1.zip...

Adding files in C:\delicious...

Adding files in C:\delicious\cats...

Adding files in C:\delicious\waffles...

Adding files in C:\delicious\walnut...

Adding files in C:\delicious\walnut\waffles...

Done.

The second time you run it, it will put all the files in C:\delicious into a ZIP file

named delicious_2.zip, and so on.

Ideas for Similar Programs

You can walk a directory tree and add files to compressed ZIP archives in several other

programs. For example, you can write programs that do the following:

Walk a directory tree and archive just files with certain extensions, such as .txt or

.py, and nothing else.

Walk a directory tree and archive every file except the .txt and .py ones.

Find the folder in a directory tree that has the greatest number of files or the folder

that uses the most disk space.

SUMMARY

Even if you are an experienced computer user, you probably handle files manually with

the mouse and keyboard. Modern file explorers make it easy to work with a few files.

explorer.

The os and shutil modules offer functions for copying, moving, renaming, and deleting

files. When deleting files, you might want to use the send2trash module to move files to

the recycle bin or trash rather than permanently deleting them. And when writing

programs that handle files, a good idea to comment out the code that does the actual

copy/move/rename/delete and add a print() call instead so you can run the program and

verify exactly what it will do.

Often you will need to perform these operations not only on files in one folder but

also on every folder in that folder, every folder in those folders, and so on. The os.walk()

/

function handles this trek across the folders for you so that you can concentrate on what

your program needs to do with the files in them.

The zipfile module gives you a way of compressing and extracting files in .ZIP

archives through Python. Combined with the file-handling functions of os and shutil,

zipfile makes it easy to package up several files from anywhere on your hard drive. These

.ZIP files are much easier to upload to websites or send as email attachments than many

separate files.

Previous chapters of this book have provided source code for you to copy. But when

me out perfectly the first time. The

next chapter focuses on some Python modules that will help you analyze and debug your

programs so that you can quickly get them working correctly.

PRACTICE QUESTIONS

1. What is the difference between shutil.copy() and shutil.copytree()?

2. What function is used to rename files?

3. What is the difference between the delete functions in the send2trash and shutil

modules?

4. ZipFile objects have a close() method just like File close() method. What ZipFile

method is equivalent to File open() method?

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

Selective Copy

Write a program that walks through a folder tree and searches for files with a certain file

extension (such as .pdf or .jpg). Copy these files from whatever location they are in to a

new folder.

Deleting Unneeded Files

get the most bang for your buck by deleting the most massive of the unwanted files. But

first you have to find them.

Write a program that walks through a folder tree and searches for exceptionally large

files or folders say, ones that have a file size of more than 100MB. (Remember that to

get a size, you can use os.path.getsize() from the os module.) Print these files with

their absolute path to the screen.

Filling in the Gaps

Write a program that finds all files with a given prefix, such as spam001.txt, spam002.txt,

and so on, in a single folder and locates any gaps in the numbering (such as if there is a

spam001.txt and spam003.txt but no spam002.txt). Have the program rename all the later

files to close this gap.

As an added challenge, write another program that can insert gaps into numbered files

so that a new file can be added.

/

DEBUGGING

/

To paraphrase an old joke among programmers, writing code accounts for 90 percent

of programming. Debugging code accounts for the other 90 percent.

Your computer w

what you intended it to do. Even professional programmers create bugs all the time, so

problem.

Fortunately, there are a few tools and techniques to identify what exactly your code is

features that can help you detect bugs early. In general, the earlier you catch bugs, the

easier they will be to fix.

Second, you will look at how to use the debugger. The debugger is a feature of Mu

that executes a program one instruction at a time, giving you a chance to inspect the

values in variables while your code runs, and track how the values change over the

course of your program. This is much slower than running the program at full speed, but

it is helpful to see the actual values in a program while it runs, rather than deducing what

the values might be from the source code.

RAISING EXCEPTIONS

Python raises an exception whenever it tries to execute invalid code. In Chapter 3, you

try and except statements so that your

program can recover from exceptions that you anticipated. But you can also raise your

code in this function and move the program execution to the except

Exceptions are raised with a raise statement. In code, a raise statement consists of the

following:

The raise keyword

A call to the Exception() function

A string with a helpful error message passed to the Exception() function

For example, enter the following into the interactive shell:

>>> raise Exception('This is the error message.')

Traceback (most recent call last):

File "<pyshell#191>", line 1, in <module>

raise Exception('This is the error message.')

Exception: This is the error message.

If there are no try and except statements covering the raise statement that raised the

e

/

Often the code that calls the function, rather than the function itself, that knows

how to handle an exception. That means you will commonly see a raise statement inside a

function and the try and except statements in the code calling the function. For example,

open a new file editor tab, enter the following code, and save the program as

boxPrint.py:

def boxPrint(symbol, width, height):

if len(symbol) != 1:

raise Exception('Symbol must be a single character string.')

if width <= 2:

raise Exception('Width must be greater than 2.')

if height <= 2:

raise Exception('Height must be greater than 2.')

print(symbol * width)

for i in range(height - 2):

print(symbol + (' ' * (width - 2)) + symbol)

print(symbol * width)

for sym, w, h in (('*', 4, 4), ('O', 20, 5), ('x', 1, 3), ('ZZ', 3, 3)):

try:

boxPrint(sym, w, h)

except Exception as err:

print('An exception happened: ' + str(err))

You can view the execution of this program at https://autbor.com/boxprint. Here

boxPrint() function that takes a character, a width, and a height, and uses

the character to make a little picture of a box with that width and height. This box shape

is printed to the screen.

Say we want the character to be a single character, and the width and height to be

greater than 2. We add if

satisfied. Later, when we call boxPrint() with various arguments, our try/except will handle

invalid arguments.

This program uses the except Exception as err form of the except statement . If an

Exception object is returned from boxPrint() , this except statement will store it in a

variable named err. We can then convert the Exception object to a string by passing it to

str() to produce a user-friendly error message . When you run this boxPrint.py, the

output will look like this:

/

* *

* *

OOOOOOOOOOOOOOOOOOOO

O O

O O

O O

OOOOOOOOOOOOOOOOOOOO

An exception happened: Width must be greater than 2.

An exception happened: Symbol must be a single character string.

Using the try and except statements, you can handle errors more gracefully instead of

letting the entire program crash.

GETTING THE TRACEBACK AS A STRING

When Python encounters an error, it produces a treasure trove of error information called

the traceback. The traceback includes the error message, the line number of the line that

caused the error, and the sequence of the function calls that led to the error. This

sequence of calls is called the call stack.

Open a new file editor tab in Mu, enter the following program, and save it as

errorExample.py:

def spam():

bacon()

def bacon():

raise Exception('This is the error message.')

spam()

When you run errorExample.py, the output will look like this:

Traceback (most recent call last):

File "errorExample.py", line 7, in <module>

spam()

File "errorExample.py", line 2, in spam

bacon()

File "errorExample.py", line 5, in bacon

/

raise Exception('This is the error message.')

Exception: This is the error message.

From the traceback, you can see that the error happened on line 5, in the bacon()

function. This particular call to bacon() came from line 2, in the spam() function, which in

turn was called on line 7. In programs where functions can be called from multiple

places, the call stack can help you determine which call led to the error.

Python displays the traceback whenever a raised exception goes unhandled. But you

can also obtain it as a string by calling traceback.format_exc(). This function is useful if you

except statement to

gracefully handle the exception. You traceback module

before calling this function.

For example, instead of crashing your program right when an exception occurs, you

can write the traceback information to a text file and keep your program running. You

the

following into the interactive shell:

>>> import traceback

>>> try:

... raise Exception('This is the error message.')

except:

... errorFile = open('errorInfo.txt', 'w')

... errorFile.write(traceback.format_exc())

... errorFile.close()

... print('The traceback info was written to errorInfo.txt.')

111

The traceback info was written to errorInfo.txt.

The 111 is the return value from the write() method, since 111 characters were written

to the file. The traceback text was written to errorInfo.txt.

Traceback (most recent call last):

File "<pyshell#28>", line 2, in <module>

Exception: This is the error message.

logging module, which is more

effective than simply writing this error information to text files.

/

ASSERTIONS

An assertion

wrong. These sanity checks are performed by assert statements. If the sanity check fails,

then an AssertionError exception is raised. In code, an assert statement consists of the

following:

The assert keyword

A condition (that is, an expression that evaluates to True or False)

A comma

A string to display when the condition is False

In plain English, an assert that the condition holds true, and if

following into the interactive shell:

>>> ages = [26, 57, 92, 54, 22, 15, 17, 80, 47, 73]

>>> ages.sort()

>>> ages

[15, 17, 22, 26, 47, 54, 57, 73, 80, 92]

>>> assert

ages[0] <= ages[-1] # Assert that the first age is <= the last age.

The assert statement here asserts that the first item in ages should be less than or equal

to the last one. This is a sanity check; if the code in sort() is bug-free and did its job, then

the assertion would be true.

Because the ages[0] <= ages[-1] expression evaluates to True, the assert statement does

nothing.

However, pretend we had a bug in our code. Say we accidentally called the

reverse() list method instead of the sort() list method. When we enter the following in the

interactive shell, the assert statement raises an AssertionError:

>>> ages = [26, 57, 92, 54, 22, 15, 17, 80, 47, 73]

>>> ages.reverse()

>>> ages

[73, 47, 80, 17, 15, 22, 54, 92, 57, 26]

>>> assert ages[0] <= ages[-1] # Assert that the first age is <= the last age.

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AssertionError

/

Unlike exceptions, your code should not handle assert statements with try and except; if

an assert fails, your program should

between the original cause of the bug and when you first notice the bug. This will reduce

the amount of code you will have to check before finding the cause.

Assertions are for programmer errors, not user errors. Assertions should only fail

while the program is under development; a user should never see an assertion error in a

finished program. For errors that your program can run into as a normal part of its

operation (such as a file not being found or the user entering invalid data), raise an

exception instead of detecting it with an assert statement. You assert

statements in place of raising exceptions, because users can choose to turn off assertions.

If you run a Python script with python -O myscript.py instead of python myscript.py, Python

will skip assert a

program and need to run it in a production setting that requires peak performance.

then.)

the

previous ages example was set to [10, 3, 2, 1, 20], then the assert ages[0] <= ages[-1] assertion

that was less than or equal to the last age, which is the only thing the assertion checked

for.

Using an Assertion in a Traffic Light Simulation

the stoplights at an intersection is a dictionary with keys 'ns' and 'ew', for the stoplights

facing north-south and east-west, respectively. The values at these keys will be one of the

strings 'green', 'yellow', or 'red'. The code would look something like this:

market_2nd = {'ns': 'green', 'ew': 'red'}

mission_16th = {'ns': 'red', 'ew': 'green'}

These two variables will be for the intersections of Market Street and 2nd Street, and

Mission Street and 16th Street. To start the project, you want to write a switchLights()

function, which will take an intersection dictionary as an argument and switch the lights.

At first, you might think that switchLights() should simply switch each light to the next

color in the sequence: Any 'green' values should change to 'yellow', 'yellow' values should

change to 'red', and 'red' values should change to 'green'. The code to implement this idea

might look like this:

def switchLights(stoplight):

for key in stoplight.keys():

/

if stoplight[key] == 'green':

stoplight[key] = 'yellow'

elif stoplight[key] == 'yellow':

stoplight[key] = 'red'

elif stoplight[key] == 'red':

stoplight[key] = 'green'

switchLights(market_2nd)

You may already see the problem with this code, but pretend you wrote the rest

of the simulation code, thousands of lines long, without noticing it. When you finally do

run the simulation, the pr but your virtual cars do!

drivers. It could take hours to trace the bug back to the switchLights() function.

But if while writing switchLights() you had added an assertion to check that at least one

of the lights is always red, you might have included the following at the bottom of the

function:

assert 'red' in stoplight.values(), 'Neither light is red! ' + str(stoplight)

With this assertion in place, your program would crash with this error message:

Traceback (most recent call last):

File "carSim.py", line 14, in <module>

switchLights(market_2nd)

File "carSim.py", line 13, in switchLights

assert 'red' in stoplight.values(), 'Neither light is red! ' +

str(stoplight)

AssertionError: Neither light is red! {'ns': 'yellow', 'ew': 'green'}

The important line here is the AssertionError . While your program crashing is not

ideal, it immediately points out that a sanity check failed: neither direction of traffic has

a red light, meaning that traffic could be going both ways. By failing fast early in the

uture debugging effort.

LOGGING

print() while

logging to debug your code. Logging is

a great way to understand happening in your program and in what order

/

logging module makes it easy to create a record of custom messages

that you write. These log messages will describe when the program execution has

reached the logging function call and list any variables you have specified at that point in

time. On the other hand, a missing log message indicates a part of the code was skipped

and never executed.

Using the logging Module

To enable the logging module to display log messages on your screen as your program

runs, copy the following to the top of your program (but under the #! python shebang

line):

import logging

logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s - %(levelname)

s - %(message)s')

need to worry too much about how this works, but basically, when Python

logs an event, it creates a LogRecord object that holds information about that event. The

logging basicConfig() function lets you specify what details about the LogRecord

object you want to see and how you want those details displayed.

Say you wrote a function to calculate the factorial of a number. In mathematics,

factorial 4 is 1 × 2 × 3 × 4, or 24. Factorial 7 is 1 × 2 × 3 × 4 × 5 × 6 × 7, or 5,040. Open

a new file editor tab and enter the following code. It has a bug in it, but you will also

enter several log messages to help yourself figure out what is going wrong. Save the

program as factorialLog.py.

import logging

logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s

- %(message)s')

logging.debug('Start of program')

def factorial(n):

logging.debug('Start of factorial(%s%%)' % (n))

total = 1

for i in range(n + 1):

total *= i

logging.debug('i is ' + str(i) + ', total is ' + str(total))

logging.debug('End of factorial(%s%%)' % (n))

return total

/

print(factorial(5))

logging.debug('End of program')

Here, we use the logging.debug() function when we want to print log information. This

debug() function will call basicConfig(), and a line of information will be printed. This

information will be in the format we specified in basicConfig() and will include the

messages we passed to debug(). The print(factorial(5)) call is part of the original program, so

the result is displayed even if logging messages are disabled.

The output of this program looks like this:

2019-05-23 16:20:12,664 - DEBUG - Start of program

2019-05-23 16:20:12,664 - DEBUG - Start of factorial(5)

2019-05-23 16:20:12,665 - DEBUG - i is 0, total is 0

2019-05-23 16:20:12,668 - DEBUG - i is 1, total is 0

2019-05-23 16:20:12,670 - DEBUG - i is 2, total is 0

2019-05-23 16:20:12,673 - DEBUG - i is 3, total is 0

2019-05-23 16:20:12,675 - DEBUG - i is 4, total is 0

2019-05-23 16:20:12,678 - DEBUG - i is 5, total is 0

2019-05-23 16:20:12,680 - DEBUG - End of factorial(5)

0

2019-05-23 16:20:12,684 - DEBUG - End of program

The factorial() function is returning 0 as the factorial of 5 for

loop should be multiplying the value in total by the numbers from 1 to 5. But the log

messages displayed by logging.debug() show that the i variable is starting at 0 instead of 1.

Since zero times anything is zero, the rest of the iterations also have the wrong value for

total. Logging messages provide a trail of breadcrumbs that can help you figure out when

things started to go wrong.

Change the for i in range(n + 1): line to for i in range(1, n + 1):, and run the program again.

The output will look like this:

2019-05-23 17:13:40,650 - DEBUG - Start of program

2019-05-23 17:13:40,651 - DEBUG - Start of factorial(5)

2019-05-23 17:13:40,651 - DEBUG - i is 1, total is 1

2019-05-23 17:13:40,654 - DEBUG - i is 2, total is 2

2019-05-23 17:13:40,656 - DEBUG - i is 3, total is 6

2019-05-23 17:13:40,659 - DEBUG - i is 4, total is 24

2019-05-23 17:13:40,661 - DEBUG - i is 5, total is 120

2019-05-23 17:13:40,661 - DEBUG - End of factorial(5)

/

120

2019-05-23 17:13:40,666 - DEBUG - End of program

The factorial(5) call correctly returns 120. The log messages showed what was going on

inside the loop, which led straight to the bug.

You can see that the logging.debug() calls printed out not just the strings passed to them

but also a timestamp and the word DEBUG.

Typing import logging and logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %

(levelname)s - %(message)s') is somewhat unwieldy. You may want to use print() calls instead,

spending a lot of time removing print() calls from your code for each log message. You

might even accidentally remove some print() calls that were being used for nonlog

messages. The nice thing with

as many as you like, and you can always disable them later by adding a single

logging.disable(logging.CRITICAL) call. Unlike print(), the logging module makes it easy to

switch between showing and hiding log messages.

Log messages are intended for the programmer, not the user.

about the contents of some dictionary value you need to see to help with debugging; use

a log message for something like that. For messages that the user will want to see, like

File not found or Invalid input, please enter a number, you should use a print() call. You

want to deprive the user of useful information after disabled log messages.

Logging Levels

Logging levels provide a way to categorize your log messages by importance. There are

five logging levels, described in Table 11-1 from least to most important. Messages can

be logged at each level using a different logging function.

Table 11-1: Logging Levels in Python

Level Logging function Description

DEBUG logging.debug() The lowest level. Used

for small details. Usually

 you care about these

messages only when

diagnosing problems.

/

Level Logging function Description

INFO logging.info() Used to record

information on general

 events in your program or

 confirm that things are

 working at their point in

 the program.

WARNING logging.warning() Used to indicate a

 potential problem that

program from working

 but might do so in the

 future.

ERROR logging.error() Used to record an error

 that caused the program

 to fail to do something.

CRITICAL logging.critical() The highest level. Used to

 indicate a fatal error that

 has caused or is about to

 cause the program to stop

 running entirely.

Your logging message is passed as a string to these functions. The logging levels are

suggestions. Ultimately, it is up to you to decide which category your log message falls

into. Enter the following into the interactive shell:

>>> import logging

>>> logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s -

%(levelname)s - %(message)s')

>>> logging.debug('Some debugging details.')

2019-05-18 19:04:26,901 - DEBUG - Some debugging details.

>>> logging.info('The logging module is working.')

2019-05-18 19:04:35,569 - INFO - The logging module is working.

>>> logging.warning('An error message is about to be logged.')

2019-05-18 19:04:56,843 - WARNING - An error message is about to be logged.

>>> logging.error('An error has occurred.')

2019-05-18 19:05:07,737 - ERROR - An error has occurred.

/

>>> logging.critical('The program is unable to recover!')

2019-05-18 19:05:45,794 - CRITICAL - The program is unable to recover!

The benefit of logging levels is that you can change what priority of logging message

you want to see. Passing logging.DEBUG to the basicConfig() level keyword

argument will show messages from all the logging levels (DEBUG being the lowest

level). But after developing your program some more, you may be interested only in

errors. In that case, you can set basicConfig() level argument to logging.ERROR. This will

show only ERROR and CRITICAL messages and skip the DEBUG, INFO, and

WARNING messages.

Disabling Logging

cluttering the screen. The logging.disable()

go into your program and remove all the logging calls by hand. You simply pass

logging.disable() a logging level, and it will suppress all log messages at that level or lower.

So if you want to disable logging entirely, just add logging.disable(logging.CRITICAL) to

your program. For example, enter the following into the interactive shell:

>>> import logging

>>> logging.basicConfig(level=logging.INFO, format=' %(asctime)s -

%(levelname)s - %(message)s')

>>> logging.critical('Critical error! Critical error!')

2019-05-22 11:10:48,054 - CRITICAL - Critical error! Critical error!

>>> logging.disable(logging.CRITICAL)

>>> logging.critical('Critical error! Critical error!')

>>> logging.error('Error! Error!')

Since logging.disable() will disable all messages after it, you will probably want to add

it near the import logging line of code in your program. This way, you can easily find it to

comment out or uncomment that call to enable or disable logging messages as needed.

Logging to a File

Instead of displaying the log messages to the screen, you can write them to a text file.

The logging.basicConfig() function takes a filename keyword argument, like so:

import logging

logging.basicConfig(filename='myProgramLog.txt', level=logging.DEBUG, format='

%(asctime)s - %(levelname)s - %(message)s')

/

The log messages will be saved to myProgramLog.txt. While logging messages are

Writing the logging messages to a file will keep your screen clear and store the messages

so you can read them after running the program. You can open this text file in any text

editor, such as Notepad or TextEdit.

MU S DEBUGGER

The debugger is a feature of the Mu editor, IDLE, and other editor software that allows

you to execute your program one line at a time. The debugger will run a single line of

ch time as you want to examine the values in the

tracking down bugs.

To run a program under debugger, click the Debug button in the top row of

buttons, next to the Run button. Along with the usual output pane at the bottom, the

Debug Inspector pane will open along the right side of the window. This pane lists the

current value of variables in your program. In Figure 11-1, the debugger has paused the

execution of the program just before it would have run the first line of code. You can see

this line highlighted in the file editor.

Figure 11-1: Mu running a program under the debugger

Debugging mode also adds the following new buttons to the top of the editor:

Continue, Step Over, Step In, and Step Out. The usual Stop button is also available.

Continue

/

Clicking the Continue button will cause the program to execute normally until it

terminates or reaches a breakpoint. (I will describe breakpoints later in this chapter.) If

you are done debugging and want the program to continue normally, click the Continue

button.

Step In

Clicking the Step In button will cause the debugger to execute the next line of code and

then pa

that function and jump to the first line of code of that function.

Step Over

Clicking the Step Over button will execute the next line of code, similar to the Step In

button. However, if the next line of code is a function call, the Step Over button will

and the debugger will pause as soon as the function call returns. For example, if the next

line of code calls a spam()

function, you can click Step Over to execute the code in the function at normal speed,

and then pause when the function returns. For this reason, using the Over button is more

common than using the Step In button.

Step Out

Clicking the Step Out button will cause the debugger to execute lines of code at full

speed until it returns from the current function. If you have stepped into a function call

with the Step In button and now simply want to keep executing instructions until you get

call.

Stop

If you want to stop debugging entirely and not bother to continue executing the rest of

the program, click the Stop button. The Stop button will immediately terminate the

program.

Debugging a Number Adding Program

Open a new file editor tab and enter the following code:

print('Enter the first number to add:')

first = input()

print('Enter the second number to add:')

second = input()

print('Enter the third number to add:')

/

third = input()

print('The sum is ' + first + second + third)

Save it as buggyAddingProgram.py and run it first without the debugger enabled. The

program will output something like this:

Enter the first number to add:

5

Enter the second number to add:

3

Enter the third number to add:

42

The sum is 5342

this time under the debugger.

When you click the Debug button, the program pauses on line 1, which is the line of

code it is about to execute. Mu should look like Figure 10-1.

Click the Step Over button once to execute the first print() call. You should use Step

Over i print()

-in

functions.) The debugger moves on to line 2, and highlights line 2 in the file editor, as

shown in Figure 11-2. This shows you where the program execution currently is.

Figure 11-2: The Mu editor window after clicking Step Over

/

Click Step Over again to execute the input() function call. The highlighting will go

away while Mu waits for you to type something for the input() call into the output pane.

Enter 5 and press ENTER. The highlighting will return.

Keep clicking Step Over, and enter 3 and 42 as the next two numbers. When the

debugger reaches line 7, the final print() call in the program, the Mu editor window

should look like Figure 11-3.

Figure 11-3: The Debug Inspector pane on the right side shows that the variables are set to strings instead

of integers, causing the bug.

In the Debug Inspector pane, you should see that the first, second, and third variables

are set to string values '5', '3', and '42' instead of integer values 5, 3, and 42. When the last

line is executed, Python concatenates these strings instead of adding the numbers

together, causing the bug.

Stepping through the program with the debugger is helpful but can also be slow.

You

can configure the debugger to do this with breakpoints.

Breakpoints

A breakpoint can be set on a specific line of code and forces the debugger to pause

whenever the program execution reaches that line. Open a new file editor tab and enter

the following program, which simulates flipping a coin 1,000 times. Save it as

coinFlip.py.

import random

heads = 0

/

for i in range(1, 1001):

if random.randint(0, 1) == 1:

heads = heads + 1

if i == 500:

print('Halfway done!')

print('Heads came up ' + str(heads) + ' times.')

The random.randint(0, 1) call will return 0 half of the time and 1 the other half of the

time. This can be used to simulate a 50/50 coin flip where 1 represents heads. When you

run this program without the debugger, it quickly outputs something like the following:

Halfway done!

Heads came up 490 times.

If you ran this program under the debugger, you would have to click the Step Over

button thousands of times before the program terminated. If you were interested in the

value of heads

flips have been completed, you could instead just set a breakpoint on the line

print('Halfway done!') . To set a breakpoint, click the line number in the file editor to cause

a red dot to appear, marking the breakpoint like in Figure 11-4.

Figure 11-4: Setting a breakpoint causes a red dot (circled) to appear next to the line number.

You if statement line, since the if statement is

executed on every single iteration through the loop. When you set the breakpoint on the

code in the if statement, the debugger breaks only when the execution enters the if clause.

The line with the breakpoint will have a red dot next to it. When you run the program

under the debugger, it will start in a paused state at the first line, as usual. But if you

click Continue, the program will run at full speed until it reaches the line with the

/

breakpoint set on it. You can then click Continue, Step Over, Step In, or Step Out to

continue as normal.

If you want to remove a breakpoint, click the line number again. The red dot will go

away, and the debugger will not break on that line in the future.

SUMMARY

Assertions, exceptions, logging, and the debugger are all valuable tools to find and

prevent bugs in your program. Assertions with the Python assert statement are a good way

from and should fail fast. Otherwise, you should raise an exception.

An exception can be caught and handled by the try and except statements. The logging

module is a good way to look into your code while running and is much more

convenient to use than the print() function because of its different logging levels and

ability to log to a text file.

The debugger lets you step through your program one line at a time. Alternatively,

you can run your program at normal speed and have the debugger pause execution

whenever it reaches a line with a breakpoint set. Using the debugger, you can see the

lifetime.

These debugging tools and techniques will help you write programs that work.

Accidentally introducing bugs into your code is a fact of life, no matter how many years

of coding experience you have.

PRACTICE QUESTIONS

1. Write an assert statement that triggers an AssertionError if the variable spam is an integer

less than 10.

2. Write an assert statement that triggers an AssertionError if the variables eggs and bacon

contain strings that are the same as each other, even if their cases are different (that

is, 'hello' and 'hello' are considered the same, and 'goodbye' and 'GOODbye' are also

considered the same).

3. Write an assert statement that always triggers an AssertionError.

4. What are the two lines that your program must have in order to be able to call

logging.debug()?

5. What are the two lines that your program must have in order to have logging.debug()

send a logging message to a file named programLog.txt?

6. What are the five logging levels?

7. What line of code can you add to disable all logging messages in your program?

8. Why is using logging messages better than using print() to display the same message?

9. What are the differences between the Step Over, Step In, and Step Out buttons in the

debugger?

10. After you click Continue, when will the debugger stop?

11. What is a breakpoint?

12. How do you set a breakpoint on a line of code in Mu?

PRACTICE PROJECT

For practice, write a program that does the following.

Debugging Coin Toss

The following program is meant to be a simple coin toss guessing game. The player gets

two guesses an easy game). However, the program has several bugs in it. Run

through the program a few times to find the bugs that keep the program from working

correctly.

import random

guess = ''

while guess not in ('heads', 'tails'):

print('Guess the coin toss! Enter heads or tails:')

guess = input()

toss = random.randint(0, 1) # 0 is tails, 1 is heads

if toss == guess:

print('You got it!')

else:

print('Nope! Guess again!')

guesss = input()

if toss == guess:

print('You got it!')

else:

print('Nope. You are really bad at this game.')

Python – MODULE 04

Dept. of CSE, CBIT, Kolar Page 1

CHAPTER 01

CLASSES AND OBJECTS

1. Programmer-defined types

 We have used many of Python’s built-in types; now we are going to define a new type. As an

example, we will create a type called Point that represents a point in two-dimensional space.

 In mathematical notation, points are often written in parentheses with a comma separating the

coordinates.

 For example, (0, 0) represents the origin, and (x, y) represents the point x units to the right and y

units up from the origin.

 There are several ways we might represent points in Python:

1. We could store the coordinates separately in two variables, x and y.

2. We could store the coordinates as elements in a list or tuple.

3. We could create a new type to represent points as objects.

 Creating a new type is more complicated than the other options, but it has advantages that will

be apparent soon.

 A programmer-defined type is also called a class. A class definition looks like this:

 The header indicates that the new class is called Point. The body is a docstring that

ex-plains what the class is for. You can define variables and methods inside a class

definition, but we will get back to that later.

 Defining a class named Point creates a class object.

 Because Point is defined at the top level, its “full name” is __main__.Point.

 The class object is like a factory for creating objects. To create a Point, you call Point as if it

were a function.

 The return value is a reference to a Point object, which we assign to blank.

 Creating a new object is called instantiation, and the object is an instance of the class.

 When you print an instance, Python tells you what class it belongs to and where it is stored in

memory (the prefix 0x means that the following number is in hexadecimal).

class Point:

"""Represents a point in 2-D space."""

>>> Point

<class '__main__.Point'>

blank = Point()

blank

<__main__.Point object at 0xb7e9d3ac>

Python – MODULE 04

Dept. of CSE, CBIT, Kolar Page 2

2. Attributes

 You can assign values to an instance using dot notation:

 This syntax is similar to the syntax for selecting a variable from a module, such as math.pi or

string.whitespace .

 In this case, though, we are assigning values to named elements of an object. These elements are

called attributes.

 A state diagram that shows an object and its attributes is called an object diagram; see Figure

15.1.

 The variable blank refers to a Point object, which contains two attributes. Each attribute refers to

a floating-point number.

 You can read the value of an attribute using the same syntax:

blank.y

4.0

x = blank.x

x

3.0

 The expression blank.x means, “Go to the object blank refers to and get the value of x.” In the

example, we assign that value to a variable named x. There is no conflict between the variable x

and the attribute x.

 You can use dot notation as part of any expression. For example:

'(%g, %g)' % (blank.x, blank.y)

'(3.0, 4.0)'

distance = math.sqrt(blank.x**2 + blank.y**2)

distance

5.0

 You can pass an instance as an argument in the usual way. For example:

 print_point takes a point as an argument and displays it in mathematical notation. To invoke it,

you can pass blank as an argument:

 Inside the function, p is an alias for blank, so if the function modifies p, blank changes.

3. Rectangles

 Sometimes it is obvious what the attributes of an object should be, but other times you have to

make decisions.

blank.x = 3.0

blank.y = 4.0

def print_point(p):

print('(%g, %g)' % (p.x, p.y))

print_point(blank) (3.0, 4.0)

Python – MODULE 04

Dept. of CSE, CBIT, Kolar Page 3

 For example, imagine you are designing a class to represent rectangles. What attributes would

you use to specify the location and size of a rectangle?

 You can ignore angle; to keep things simple, assume that the rectangle is either vertical or

horizontal.

 There are at least two possibilities:

1. You could specify one corner of the rectangle (or the center), the width, and the height.

2. You could specify two opposing corners.

 At this point it is hard to say whether either is better than the other, so we’ll implement the first

one, just as an example.

 Here is the class definition:

 The docstring lists the attributes: width and height are numbers; corner is a Point object that

specifies the lower-left corner.

 To represent a rectangle, you have to instantiate a Rectangle object and assign values to the

attributes:

 The expression box.corner.x means, “Go to the object box refers to and select the attribute

named corner; then go to that object and select the attribute named x.”

 Figure 15.2 shows the state of this object. An object that is an attribute of another object is

embedded.

4. Instances as return values

 Functions can return instances. For example, find_center takes a Rectangle as an argument and

returns a Point that contains the coordinates of the center of the Rectangle:

class Rectangle:

"""Represents a rectangle.

attributes: width, height, corner."""

box = Rectangle()

box.width = 100.0

box.height = 200.0

box.corner = Point()

box.corner.x = 0.0

box.corner.y = 0.0

def find_center(rect):

p = Point()

p.x = rect.corner.x + rect.width/2

p.y = rect.corner.y + rect.height/2

return p

Python – MODULE 04

Dept. of CSE, CBIT, Kolar Page 4

 Here is an example that passes box as an argument and assigns the resulting Point to center:

5. Objects are mutable

 You can change the state of an object by making an assignment to one of its attributes. For

example, to change the size of a rectangle without changing its position, you can modify the

values of width and height:

 You can also write functions that modify objects.

 For example, grow_rectangle takes a Rectangle object and two numbers, dwidth and dheight,

and adds the numbers to the width and height of the rectangle:

 Here is an example that demonstrates the effect:

 Inside the function, rect is an alias for box, so when the function modifies rect, box changes.

6. Copying

 Aliasing can make a program difficult to read because changes in one place might have

unexpected effects in another place.

 It is hard to keep track of all the variables that might refer to a given object.

 Copying an object is often an alternative to aliasing. The copy module contains a function called

copy that can duplicate any object:

p1 = Point()

p1.x = 3.0

p1.y = 4.0

import copy

p2 = copy.copy(p1)

 p1 and p2 contain the same data, but they are not the same Point.

center = find_center(box)

print_point(center)

(50, 100)

box.width = box.width + 50

box.height = box.height + 100

def grow_rectangle(rect, dwidth, dheight):

rect.width += dwidth

rect.height += dheight

box.width, box.height (150.0, 300.0)

grow_rectangle(box, 50, 100)

box.width, box.height

(200.0, 400.0)

Python – MODULE 04

Dept. of CSE, CBIT, Kolar Page 5

print_point(p1)

(3, 4)

print_point(p2)

(3, 4)

p1 is p2

False

p1 == p2

False

 The is operator indicates that p1 and p2 are not the same object, which is what we expected. But

you might have expected == to yield True because these points contain the same data.

 In that case, you will be disappointed to learn that for instances, the default behavior of the ==

operator is the same as the is operator; it checks object identity, not object equivalence.

 That’s because for programmer-defined types, Python doesn’t know what should be considered

equivalent. At least, not yet.

 If you use copy.copy to duplicate a Rectangle, you will find that it copies the Rectangle object

but not the embedded Point.

box2 = copy.copy(box)

box2 is box

False

box2.corner is box.corner

True

 Figure 15.3 shows what the object diagram looks like. This operation is called a shallow copy

because it copies the object and any references it contains, but not the embedded objects.

 For most applications, this is not what you want.

 In this example, invoking grow_rectangle on one of the Rectangles would not affect the other,

but invoking move_rectangle on either would affect both! This behavior is confusing and error-

prone.

 Fortunately, the copy module provides a method named deepcopy that copies not only the object

but also the objects it refers to, and the objects they refer to, and so on. You will not be surprised

to learn that this operation is called a deep copy.

box3 = copy.deepcopy(box)

box3 is box

False

box3.corner is box.corner

False

 box3 and box are completely separate objects.

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 6

1. Time

CHAPTER 02

CLASSES AND FUNCTIONS

 As another example of a programmer-defined type, we’ll define a class called Time that records

the time of day. The class definition looks like this:

 We can create a new Time object and assign attributes for hours, minutes, and seconds:

 The state diagram for the Time object looks like Figure below.

2. Pure functions

 In the next few sections, we’ll write two functions that add time values.

 They demonstrate two kinds of functions: pure functions and modifiers.

 They also demonstrate a development plan I’ll call prototype and patch, which is a way of tackling a

complex problem by starting with a simple prototype and incrementally dealing with the complications.

 Here is a simple prototype of add_time:

 The function creates a new Time object, initializes its attributes, and returns a reference to the

new object.

 This is called a pure function because it does not modify any of the objects passed to it as

arguments and it has no effect, like displaying a value or getting user input, other than returning a

value.

time = Time()

time.hour = 11

time.minute = 59

time.second = 30

class Time:

"""Represents the time of day.

attributes: hour, minute, second """

def add_time(t1, t2):

sum = Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

return sum

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 7

 To test this function, let us create two Time objects: start contains the start time of a movie, like Monty

Python and the Holy Grail, and duration contains the run time of the movie, which is one hour 35

minutes.

 add_time figures out when the movie will be done.

 The result, 10:80:00 might not be what you were hoping for.

 The problem is that this function does not deal with cases where the number of seconds or

minutes adds up to more than sixty.

 When that happens, we have to “carry” the extra seconds into the minute column or the

extra minutes into the hour column.

 Here’s an improved version:

>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 0

>>> duration = Time()

>>> duration.hour = 1

>>> duration.minute = 35

>>> duration.second = 0

>>> done = add_time(start, duration)

>>> print_time(done)

10:80:00

def add_time(t1, t2):

sum = Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

if sum.second >= 60: sum.second -= 60

sum.minute += 1

if sum.minute >= 60: sum.minute -= 60

sum.hour += 1

return sum

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 8

3. Modifiers

 Sometimes it is useful for a function to modify the objects it gets as parameters.

 In that case, the changes are visible to the caller. Functions that work this way are called modifiers.

 increment, which adds a given number of seconds to a Time object, can be written naturally as a

modifier. Here is a rough draft:

 The first line performs the basic operation; the remainder deals with the special cases we saw before.

 Is this function correct? What happens if seconds is much greater than sixty?

 In that case, it is not enough to carry once; we have to keep doing it until time.second is less than

sixty.

 One solution is to replace the if statements with while statements. That would make the function

correct, but not very efficient.

 Anything that can be done with modifiers can also be done with pure functions.

4. Prototyping versus planning

 The development plan, i.e. demonstrating is called “prototype and patch”. For each function, we wrote

a prototype that performed the basic calculation and then tested it, patching errors along the way.

 This approach can be effective, especially if you don’t yet have a deep understanding of the

problem.

 But incremental corrections can generate code that is unnecessarily complicated—since it deals with

many special cases—and unreliable—since it is hard to know if you have found all the errors.

 Here is a function that converts Times to integers:

def increment(time, seconds):

time.second += seconds

if time.second >= 60: time.second -= 60
time.minute += 1

if time.minute >= 60: time.minute -= 60

time.hour += 1

def time_to_int(time):

minutes = time.hour * 60 +time.minute

seconds = minutes * 60 + time.second return seconds

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 9

 And here is a function that converts an integer to a Time (recall that divmod divides the first

argument by the second and returns the quotient and remainder as a tuple).

 Once we are convinced they are correct, you can use them to rewrite:

 This version is shorter than the original, and easier to verify.

def int_to_time(seconds):

time = Time()

minutes, time.second = divmod(seconds, 60)

time.hour, time.minute = divmod(minutes, 60)

return time

def add_time(t1, t2):

seconds = time_to_int(t1) + time_to_int(t2)

return int_to_time(seconds)

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 10

CHAPTER 03

CLASSES AND METHODS

1. Object-Oriented Features

 Python is an object-oriented programming language, which means that it provides features that support

object-oriented programming, which has these defining characteristics:

• Programs include class and method definitions.

• Most of the computation is expressed in terms of operations on objects.

• Objects often represent things in the real world, and methods often correspond to the ways things in the

real world interact.

 A method is a function that is associated with a particular class.

 Methods are semantically the same as functions, but there are two syntactic differences:

 Methods are defined inside a class definition in order to make the relationship between the class and the

method explicit.

 The syntax for invoking a method is different from the syntax for calling a function.

2. Printing Objects

 We already defined a class named and also wrote a function named print_time:

 To call this function, we have to pass a Time object as an argument:

def print_time(time):

print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

class Time:

"""Represents the time of day."""

>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 00

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 11

 To make print_time a method, all we have to do is move the function definition inside the class definition.

Notice the change in indentation.

 Now there are two ways to call print_time. The first (and less common) way is to use function

syntax:

 In this use of dot notation, Time is the name of the class, and print_time is the name of the

method. start is passed as a parameter.

 The second (and more concise) way is to use method syntax:

 In this use of dot notation, print_time is the name of the method (again), and start is the object the method

is invoked on, which is called the subject.

 Just as the subject of a sentence is what the sentence is about, the subject of a method invocation is what

the method is about.

 Inside the method, the subject is assigned to the first parameter, so in this case start is assigned to time.

 By convention, the first parameter of a method is called self, so it would be more common to write

print_time like this:

 The reason for this convention is an implicit metaphor:

>>> print_time(start)

09:45:00

class Time:

def print_time(time):

print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

>>>Time.print_time(start)

09:45:00

>>> start.print_time()

09:45:00

class Time:

def print_time(self):

print('%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second))

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 12

• The syntax for a function call, print_time(start), suggests that the function is the active agent. It says

something like, “Hey print_time! Here’s an object for you to print.”

• In object-oriented programming, the objects are the active agents. A method invocation like

start.print_time() says “Hey start! Please print yourself.”

3. Another Example

 Here’s a version of increment rewritten as a method:

 This version assumes that time_to_int is written as a method. Also, note that it is a pure function, not a

modifier.

 Here’s how you would invoke increment:

 The subject, start, gets assigned to the first parameter, self. The argument, 1337, gets assigned to the

second parameter, seconds.

 This mechanism can be confusing, especially if you make an error. For example, if you invoke

increment with two arguments, you get:

 The error message is initially confusing, because there are only two arguments in parentheses. But the

subject is also considered an argument, so all together that’s three.

 By the way, a positional argument is an argument that doesn’t have a parameter name; that is, it is not a

keyword argument. In this function call:

inside class Time:

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

>>> start.print_time()

09:45:00
>>> end = start.increment(1337)
>>> end.print_time()

10:07:17

>>> end = start.increment(1337, 460)

TypeError: increment() takes 2 positional arguments but 3 were given

sketch(parrot, cage, dead=True)

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 13

 parrot and cage are positional, and dead is a keyword argument.

4. A More Complicated Example

 Rewriting is_after is slightly more complicated because it takes two Time objects as parameters.

 In this case it is conventional to name the first parameter self and the second parameter other:

 To use this method, you have to invoke it on one object and pass the other as an argument:

5. The init Method

 The init method (short for “initialization”) is a special method that gets invoked when an object is

instantiated.

 Its full name is init (two underscore characters, followed by init, and then two more underscores).

 An init method for the Time class might look like this:

 It is common for the parameters of init to have the same names as the attributes.

 The statement

self.hour = hour

 stores the value of the parameter hour as an attribute of self.

 The parameters are optional, so if you call Time with no arguments, you get the default values:

inside class Time:

def is_after(self, other):

return self.time_to_int() > other.time_to_int()

>>> end.is_after(start)

True

inside class Time:

def _init (self, hour=0, minute=0, second=0):

self.hour = hour

self.minute = minute

self.second = second

>>> time = Time()

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 14

 If we provide one argument, it overrides hour:

 If we provide two arguments, they override hour and minute.

 And if we provide three arguments, they override all three default values

6. The _str_ Method

 str is a special method, like init , that is supposed to return a string representa- tion of an

object.

 For example, here is a str method for Time objects:

 When you print an object, Python invokes the str method:

7. Operator Overloading

 By defining other special methods, you can specify the behavior of operators on programmer-defined types.

 For example, if we define a method named add for the Time class, you can use the + operator on Time

objects.

 Here is what the definition might look like:

>>> time = Time(9, 45)

>>> print(time)

09:45:00

>>> time = Time(9, 45)

>>> time.print_time()

09:45:00

>>> time.print_time()

00:00:00

>>> time = Time (9)

>>> time.print_time()

09:00:00

inside class Time:

def str (self):

return '%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second)

def _add_(self,other):

seconds=self.time_to_int()+other.time_to_int()

return int_to_time(seconds)

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 15

 And here is how we could use it:

 When you apply the + operator to Time objects, Python invokes add .

 When you print the result, Python invokes str . So there is a lot happening behind the scenes!

 Changing the behavior of an operator so that it works with programmer-defined types is called operator

overloading.

 For every operator in Python there is a corresponding special method, like add .

8. Type-Based Dispatch

 The following is the version of _add_ that checks the type of other and invokes either add_time or

increment:

 The built-in function isinstance takes a value and a class object, and returns True if the value is an instance

of the class.

 If other is a Time object, add invokes add_time. Otherwise it assumes that the parameter is a number

and invokes increment.

 This operation is called a type-based dispatch because it dispatches the computation to different methods

based on the type of the arguments.

 Here are examples that use the + operator with different types:

def add (self,other):

if isintance(other, Time):

return self.add_time(other)

else:

return self.increment(other)

def add_time(self, other):

seconds = self.time_to_int() + other.time_to_int()

return int_to_time(seconds)

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

>>> start = Time(9, 45)

>>> duration = Time(1, 35)

>>> print(start + duration)

11:20:00

>>> start = Time(9, 45)

>>> duration = Time(1, 35)

>>> print(start + duration)

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 16

 Unfortunately, this implementation of addition is not commutative. If the integer is the first operand, you get

 The problem is, instead of asking the Time object to add an integer, Python is asking an integer to add a

Time object, and it doesn’t know how.

 But there is a clever solution for this problem: the special method radd , which stands for “right-side

add”.

 This method is invoked when a Time object appears on the right side of the + operator. Here’s the

definition:

9. Polymorphism

 Type-based dispatch is useful when it is necessary, but (fortunately) it is not always necessary. Often you

can avoid it by writing functions that work correctly for arguments with different types.

 Many of the functions we wrote for strings also work for other sequence types. For example, we used

histogram to count the number of times each letter appears in a word.

inside class Time:

def radd (self, other):

return self. add (other)

 And here’s how it’s used:

>>> print(1337 + start)

10:07:17

11:20:00

>>> print(start + 1337)

10:07:17

>>> print(1337 + start)

TypeError: unsupported operand type(s) for +: 'int' and 'instance'

def

histogram(s):

d = dict()

for c in s:

if c not in d:

d[c] = 1

else:

d[c] = d[c]+1

return d

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 17

 This function also works for lists, tuples, and even dictionaries, as long as the elements of s are hashable, so

they can be used as keys in d:

 Functions that work with several types are called polymorphic. Polymorphism can facilitate code reuse.

 For example, the built-in function sum, which adds the elements of a sequence, works as long as the

elements of the sequence support addition.

 In general, if all of the operations inside a function work with a given type, the function works with that

type.

 The best kind of polymorphism is the unintentional kind, where you discover that a func- tion you already

wrote can be applied to a type you never planned for.

>>> t = ['spam', 'egg', 'spam', 'spam', 'bacon', 'spam']

>>> histogram(t)

{'bacon': 1, 'egg': 1, 'spam': 4}

>>> t1 = Time(7, 43)

>>> t2 = Time(7, 31)

>>> t3 = Time(7, 37)

>>> total = sum(t1, t2, t3)

>>> print(total)

23:01:00

Python – MODULE 4

Dept. of CSE, CBIT, Kolar Page 18

DEPARTMENT: Computer Science & Engineering

MODULE 4

SEMESTER: 6th SUBJECT: Python Application Programming SUB CODE: 15CS664

Questions
1 Create a student class and initialize it with name and roll number. Design methods to:

i) Display_to display all information of the student.

ii) setAge_to assign age to student.

iii) setMarks_to assign marks to the student.

7

2 Using datetime module writes a program that gets the current date and prints the day of the week. 4

3 What are polymorphic functions? Explain with a snippet code. 5

4 What does the keyword self in Python mean? Explain with an example. 5

5 Show using a Python code how_init_method is invoed when an object is initiated. Explain its

working.

6

6 Explain str_method with a Pytho program. 5

7 How class can be instantiated in python? Write a python program to express instances as return

values to define a class RECTANGLE with members width, height, corner_x, corner_y and

member function : to find center, area and perimeter of a rectangle.

8

8 Explain init and str method with an example python program. 8

9 Define polymorphism. Demonstrate polymorphism with function to find histogram to count the

number of times each letter appears in a word and in sentence.

8

10 What is a pure function? Write a python program to find duration of event if start and end time is

given by defining lass TIME.

8

11 What is Operator Overloading? Write Pythonic code to overload “+”, ”-“ and “*” operators by

providing the methods _add_, _sub_and_mul_.

10

12 Consider a user defined class called Time that records the time of the day. Create a new Time

object and assign attributes for hours, minutes and seconds. Write a function called print_time that

takes a Time object and prints it in the form hour:minute:second. Write a Boolean function called

is_after that takes two Time objects, t1 and t2, and returns True if t1 follows t2 chronologically and

False otherwise. Write a function called increment which adds a given number of seconds to a

Time object.

10

13 Write Pythonic code to create a function named move_rectangle that takes an object Rectangle and

two numbers named dx and dy. It should change the location of the Rectangle by adding dx to the

x coordinate of corner and adding dy to the y coordinate of corner.

10

14 Explain Polymorphism in Python in detail with examples. 10

15 Consider a user defined class called Point. Write a function called distance that takes two points as

arguments and returns the distance between them.

10

16 Write Pythonic code to compute the end time of a movie by specifying the start time and duration

by considering all relevant conditions.

10

17 Write an _init_ method for the class that takes x and y as optional parameters and assigns them to

the corresponding attributes. Write an add method for Points that works with either a Point object

or a tuple. If the second operand is a Point, the method should return a new Point whose x

coordinate is the sum of the x coordinated of the operand, and likewise for the y coordinates. If the

second operand is a tuple, the method should add the first element of the tuple to the x coordinate

and the second element to the y coordinate, and return a new point with the result.

10

MODULE 5 PYTHON

Dept of CSE, CBIT 1

Chapter 1: Networked programs

1. HyperText Transport Protocol - HTTP

 HTTP is the media through which we can retrieve web-based data.
 The HTTP is an application protocol for distributed and hypermedia information systems.
 HTTP is the foundation of data communication for the World Wide Web. Hypertext is structured

text that uses logical links (hyperlinks) between nodes containing text. HTTP is the protocol to
exchange or transfer hypertext.

 The network protocol that powers the web is actually quite simple and there is built-in support in
Python called sockets which makes it very easy to make network connections and retrieve data
over those sockets in a Python program.

 A socket is much like a file, except that a single socket provides a two-way connection between two
programs. You can both read from and write to the same socket. If you write something to a socket,
it is sent to the application at the other end of the socket. If you read from the socket, you are given
the data which the other application has sent.

 So an important part of programs that communicate over the Internet is to have some sort of
 protocol. A protocol is a set of precise rules that determine

- Who will send request for what purpose
- What action to be taken
- What response to be given

 To send request and to receive response, HTTP uses GET and POST methods.

2. The World’s Simplest Web Browser

A socket connection between the user program and the webpage is shown in Figure

Now, observe the following program –

import socket

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mysock.connect(('data.pr4e.org', 80))

cmd='GET http://data.pr4e.org/romeo.txt HTTP/1.0\r\n\r\n'.encode()

http://data.pr4e.org/romeo.txt

MODULE 5 PYTHON

Dept of CSE, CBIT 2

mysock.send(cmd)

while True:

data = mysock.recv(512)

if (len(data) < 1):

break

print(data.decode(),end='')

mysock.close()

 When we run above program, we will get some information related to web-server of the website
which we are trying to scrape.

 Then, we will get the data written in that web-page. In this program, we are extracting 512 bytes of
data at a time.

 The extracted data is decoded and printed. When the length of data becomes less than one (that is,
no more data left out on the web page), the loop is terminated.

3. Retrieving an image over HTTP

 In the previous section, we retrieved the text data from the webpage. Similar logic can used to
extract images on the webpage using HTTP.

 In the following program, we extract the image data in the chunks of 5120 bytes at a time, store
that data in a string, trim off the headers and then store the image file on the disk.

import socket
import time

mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

mysock.connect((HOST, PORT))

mysock.sendall(b'GET http://data.pr4e.org/cover3.jpg HTTP/1.0\r\n\r\n')

count = 0

picture = b""

while True:

data = mysock.recv(5120)

if (len(data) < 1):

Break

#empty string in binary format

#retrieve 5120 bytes at a time

time.sleep(0.25) #programmer can see data retrieval easily

count = count + len(data)

print(len(data), count)

picture = picture + data

mysock.close()

#display cumulative data retrieved

pos = picture.find(b"\r\n\r\n") #find end of the header (2 CRLF)

print('Header length', pos)

print(picture[:pos].decode())

Skip past the header and save the picture data

picture = picture[pos+4:]#

fhand = open("stuff.jpg", "wb") #image is stored as stuff.jpg

fhand.write(picture)

fhand.close()

http://data.pr4e.org/cover3.jpg

MODULE 5 PYTHON

Dept of CSE, CBIT 3

 When we run the above program, the amount of data (in bytes) retrieved from the internet is

displayed in a cumulative format.

 At the end, the image file ‘stuff.jpg’ will be stored in the current working directory. (One has to verify it

by looking at current working directory of the program).

4. Retrieving web pages with urllib

 Python provides simpler way of webpage retrieval using the library urllib. Here, webpage is treated like
a file. urllib handles all of the HTTP protocol and header details. Following is the code equivalent to the
program given in previous code.

import urllib.request

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

for line in fhand:

print(line.decode().strip())

 Once the web page has been opened with urllib.urlopen, we can treat it like a file and read through it

using a for-loop.

 When the program runs, we only see the output of the contents of the file. The headers are still sent,

but the urllib code consumes the headers and only returns the data to us.

 Following is the program to retrieve the data from the file romeo.txt which is residing at

www.data.pr4e.org, and then to count number of words in it.

import urllib.request, urllib.parse, urllib.error

fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

counts = dict()

for line in fhand:

words = line.decode().split()

for word in words:

counts[word] = counts.get(word, 0) + 1

print(counts)

5. Parsing HTML and scraping the web

 One of the common uses of the urllib capability in Python is to scrape the web. Web scraping is when

we write a program that pretends to be a web browser and retrieves pages, then examines the data in

those pages looking for patterns.

 Example: a search engine such as Google will look at the source of one web page and extract the links

to other pages and retrieve those pages, extracting links, and so on.

 Using this technique, Google spiders its way through nearly all of the pages on the web. Google also

uses the frequency of links from pages it finds to a particular page as one measure of how “important”

a page is and how high the page should appear in its search results.

http://data.pr4e.org/romeo.txt%27)
http://www.data.pr4e.org/
http://data.pr4e.org/romeo.txt%27)

MODULE 5 PYTHON

Dept of CSE, CBIT 4

6. Parsing HTML using regular expressions

 Sometimes, we may need to parse the data on the web which matches a particular pattern. For this
purpose, we can use regular expressions. Now, we will consider a program that extracts all the
hyperlinks given in a particular webpage.

 To understand the Python program for this purpose, one has to know the pattern of an HTML file. Here
is a simple HTML file –

<h1>The First Page</h1>

<p>

If you like, you can switch to the

Second Page.

</p>

 Here, <h1> and </h1> are the beginning and end of header tags
<p> and </p> are the beginning and end of paragraph tags
<a> and are the beginning and end of anchor tag which is used for giving links
href is the attribute for anchor tag which takes the value as the link for another page.

 The above information clearly indicates that if we want to extract all the hyperlinks in a webpage, we

need a regular expression which matches the href attribute. Thus, we can create a regular expression

as –

href="http://.+?"

 Here, the question mark in .+? indicate that the match should find smallest possible matching string.

 Now, consider a Python program that uses the above regular expression to extract all hyperlinks from

the webpage given as input.

import urllib.request

import re

url = input('Enter - ') #give URL of any website

html = urllib.request.urlopen(url).read()

links = re.findall(b'href="(http://.*?)"', html)

for link in links:

print(link.decode())

 When we run this program, it prompts for user input. We need to give a valid URL of any website. Then

all the hyperlinks on that website will be displayed.

7. Parsing HTML using BeautifulSoup

 There are a number of Python libraries which can help you parse HTML and extract data from the
pages. Each of the libraries has its strengths and weaknesses and you can pick one based on your
needs.

 BeautifulSoup library is used for parsing HTML documents and extracting data from HTML documents
that compensates for most of the imperfections in the HTML that browsers.

http://www.dr-chuck.com/page2.htm

MODULE 5 PYTHON

Dept of CSE, CBIT 5

 BeautifulSoup library is one of the simplest libraries available for parsing. To use this, download and
install the BeautifulSoup code from: http://www.crummy.com/software/

 Consider the following program which uses urllib to read the page and uses BeautifulSoup to extract
href attribute from the anchor tag.

import urllib.request, urllib.parse, urllib.error

from bs4 import BeautifulSoup

import ssl

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urllib.request.urlopen(url,context=ctx).read()

soup = BeautifulSoup(html, 'html.parser')

tags = soup('a')

for tag in tags:

print(tag.get('href', None))

A sample output would be –

Enter - http://www.dr-chuck.com/page1.htm

http://www.dr-chuck.com/page2.htm

 The above program prompts for a web address, then opens the web page, reads the data and passes

the data to the BeautifulSoup parser, and then retrieves all of the anchor tags and prints out the href

attribute for each tag.

 The BeautifulSoup can be used to extract various parts of each tag as shown below –

from urllib.request import urlopen

from bs4 import BeautifulSoup

import ssl

ctx = ssl.create_default_context()

ctx.check_hostname = False

ctx.verify_mode = ssl.CERT_NONE

url = input('Enter - ')

html = urlopen(url, context=ctx).read()

soup = BeautifulSoup(html, "html.parser")

tags = soup('a')

for tag in tags:

print('TAG:', tag)

print('URL:', tag.get('href', None))

print('Contents:', tag.contents[0])

print('Attrs:', tag.attrs)

The sample output would be –

http://www.crummy.com/software/
http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm

MODULE 5 PYTHON

Dept of CSE, CBIT 6

Enter - http://www.dr-chuck.com/page1.htm

TAG: Second

Page

URL: http://www.dr-chuck.com/page2.htm

Contents:

Second Page

Attrs: {'href': 'http://www.dr-chuck.com/page2.htm'}

8. Reading binary files using urllib

 Sometimes you want to retrieve a non-text (or binary) file such as an image or video file. The data in
these files is generally not useful to print out, but you can easily make a copy of a URL to a local file on
your hard disk using urllib. In previous section, we have seen how to retrieve image file from the web
using sockets. Now, here is an equivalent program using urllib.

import urllib.request

img=urllib.request.urlopen('http://data.pr4e.org/cover3.jpg').read()

fhand = open('cover3.jpg', 'wb')

fhand.write(img)

fhand.close()

 Once we execute the above program, we can see a file cover3.jpg in the current working directory in
our computer.

 The program reads all of the data in at once across the network and stores it in the variable img in the
main memory of your computer, then opens the file cover.jpg and writes the data out to your disk. This
will work if the size of the file is less than the size of the memory (RAM) of your computer.

 However, if this is a large audio or video file, this program may crash or at least run extremely slowly
when your computer runs out of memory. In order to avoid memory overflow, we retrieve the data in
blocks (or buffers) and then write each block to your disk before retrieving the next block.

 This way the program can read any size file without using up all of the memory you have in your
computer.

 Following is another version of above program, where data is read in chunks and then stored onto the
disk.

import urllib.request, urllib.parse, urllib.error

img=urllib.request.urlopen('http://data.pr4e.org/cover3.jpg')

fhand = open('cover3.jpg', 'wb')

size = 0

while True:

info = img.read(100000)

if len(info) < 1:

break

size = size + len(info)

fhand.write(info)

print(size, 'characters copied.')

fhand.close()

 Once we run the above program, an image file cover3.jpg will be stored on to the current working

directory.

http://www.dr-chuck.com/page1.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm
http://www.dr-chuck.com/page2.htm%27
http://data.pr4e.org/cover3.jpg%27)
http://data.pr4e.org/cover3.jpg%27)
http://data.pr4e.org/cover3.jpg%27)

MODULE 5 PYTHON

Dept of CSE, CBIT 7

Chapter 2: Using Web Services

 There are two common formats that are used while exchanging data across the web. One is HTML and
the other is XML (eXtensible Markup Language). In the previous section we have seen how to retrieve
the data from a web-page which is in the form of HTML. Now, we will discuss the retrieval of data from
web-page designed using XML.

 XML is best suited for exchanging document-style data. When programs just want to exchange

dictionaries, lists, or other internal information with each other, they use JavaScript Object Notation or

JSON (refer www.json.org). We will look at both formats.

1. eXtensible Markup Language- XML

 XML looks very similar to HTML, but XML is more structured than HTML. Here is a sample of an XML
document:

<person>

<name>Chuck</name>

 <phone type="intl">

+1 734 303 4456

 </phone>

 <email hide="yes"/>

</person>

 Often it is helpful to think of an XML document as a tree structure where there is a top tag person and

other tags such as phone are drawn as children of their parent nodes. Figure represents the tree

structure for above given XML code.

Figure: Tree Representation of XML

2. Parsing XML

 Python provides library xml.etree.ElementTree to parse the data from XML files. One has to provide
XML code as a string to built-in method fromstring() of ElementTree class.

MODULE 5 PYTHON

Dept of CSE, CBIT 8

 ElementTree acts as a parser and provides a set of relevant methods to extract the data. Hence, the
programmer need not know the rules and the format of XML document syntax.

 The fromstring()method will convert XML code into a tree-structure of XML nodes. When the XML is in
a tree format, Python provides several methods to extract data from XML.

 Consider the following program:

import xml.etree.ElementTree as ET

data = '''

<person>

<name>Chuck</name>

<phone type="intl">

+1 734 303 4456

</phone>

<email hide="yes"/>

</person>'''

tree = ET.fromstring(data)

print('Name:', tree.find('name').text)

print('Attribute for tag email:', tree.find('email').get('hide'))

print('Attribute for tag phone:', tree.find('phone').get('type'))

The output would be –

Name: Chuck

Attribute for the tag email: yes

Attribute for the tag phone: intl

 In the above example, fromstring() is used to convert XML code into a tree. The find() method searches

XML tree and retrieves a node that matches the specified tag. The get() method retrieves the value

associated with the specified attribute of that tag.

 Each node can have some text, some attributes (like hide), and some “child” nodes. Each node can be

the parent for a tree of nodes.

3. Looping through nodes

 Most of the times, XML documents are hierarchical and contain multiple nodes. To process all the
nodes, we need to loop through all those nodes. Consider following example as an illustration.

import xml.etree.ElementTree as ET

input = '''

<stuff>

<users>

<user x="2">

<id>001</id>

<name>Chuck</name>

 </user>

<user x="7">

 <id>009</id>

 <name>Brent</name>

</user>

 </users>

MODULE 5 PYTHON

Dept of CSE, CBIT 9

</stuff>'''

stuff = ET.fromstring(input)

 lst = stuff.findall('users/user')

print('User count:', len(lst))

for item in lst:

print('Name', item.find('name').text)

 print('Id', item.find('id').text)

print('Attribute', item.get("x"))

The output would be –
User count: 2

Name Chuck

 Id 001

 Attribute 2

Name Brent

 Id 009

Attribute 7

 The findall() method retrieves a Python list of subtrees that represent the user structures in the

XML tree. Then we can write a for-loop that extracts each of the user nodes, and prints the name

and id, which are text elements as well as the attribute x from the user node.

4. JavaScript Object Notation-JSON

 The JSON format was inspired by the object and array format used in the JavaScript language. But
since Python was invented before JavaScript, Python’s syntax for dictionaries and lists influenced
the syntax of JSON. So the format of JSON is a combination of Python lists and dictionaries.
Following is the JSON encoding that is roughly equivalent to the XML code (the string data) given
in the program of Section 5.2.2.

{

"name" : "Chuck",

"phone": {

"type" : "intl",

"number" : "+1 734 303 4456"

5. },

"email": {

"hide" : "yes"

}

}

 Observe the differences between XML code and JSON code:
In XML, we can add attributes like “intl” to the “phone” tag. In JSON, we simply have key-value

pairs.

XML uses tag “person”, which is replaced by a set of outer curly braces in JSON.

 In general, JSON structures are simpler than XML because JSON has fewer capabilities than XML.
But JSON has the advantage that it maps directly to some combination of dictionaries and lists.

MODULE 5 PYTHON

Dept of CSE, CBIT 10

 And since nearly all programming languages have something equivalent to Python’s dictionaries
and lists, JSON is a very natural format to have two compatible programs exchange data.

 JSON is quickly becoming the format of choice for nearly all data exchange between applications

because of its relative simplicity compared to XML.

5. Parsing JSON

 Python provides a module json to parse the data in JSON pages. Consider the following program
which uses JSON equivalent of XML string written in previous section. Note that, the JSON string
has to embed a list of dictionaries.

import json

data = '''

[

{ "id" : "001", "x" : "2",

"name" : "Chuck"

} ,

{ "id" : "009",

"x" : "7",

"name" : "Chuck"

}

]'''

info = json.loads(data)

print('User count:', len(info))

for item in info:

print('Name', item['name'])

print('Id', item['id'])

print('Attribute', item['x'])

The output would be –

User count: 2

Name Chuck

Id 001

Attribute 2

Name Chuck

Id 009

Attribute 7

 Here, the string data contains a list of users, where each user is a key-value pair. The method loads() in
the json module converts the string into a list of dictionaries. Now onwards, we don’t need anything
from json, because the parsed data is available in Python native structures.

 Using a for-loop, we can iterate through the list of dictionaries and extract every element (in the form
of key-value pair) as if it is a dictionary object. That is, we use index operator (a pair of square brackets)
to extract value for a particular key.

MODULE 5 PYTHON

Dept of CSE, CBIT 11

6. Application Programming Interfaces
 Till now, we have discussed how to exchange data between applications using HTTP, XML and JSON.

The next step is to understand API. Application Programming Interface defines and documents the
contracts between the applications.

 When we use an API, generally one program makes a set of services available for use by other
applications and publishes the APIs (i.e., the “rules”) that must be followed to access the services
provided by the program.

 When we begin to build our programs where the functionality of our program includes access to

services provided by other programs, we call the approach a Service-Oriented Architecture(SOA).

 A SOA approach is one where our overall application makes use of the services of other applications. A

non-SOA approach is where the application is a single stand-alone application which contains all of the

code necessary to implement the application.

 Consider an example of SOA: Through a single website, we can book flight tickets and hotels. The data

related to hotels is not stored in the airline servers. Instead, airline servers contact the services on hotel

servers and retrieve the data from there and present it to the user. When the user agrees to make a

hotel reservation using the airline site, the airline site uses another web service on the hotel systems to

actually make the reservation. Similarly, to reach airport, we may book a cab through a cab rental

service. And when it comes time to charge your credit card for the whole transaction, still other

computers become involved in the process. This process is depicted in Figure below:

 SOA has following major advantages:

 we always maintain only one copy of data (this is particularly important for things like hotel
reservations where we do not want to over-commit)

 the owners of the data can set the rules about the use of their data.

MODULE 5 PYTHON

Dept of CSE, CBIT 12

 With these advantages, an SOA system must be carefully designed to have good performance and

meet the user’s needs. When an application makes a set of services in its API available over the web,

then it is called as web services.

7. Google geocoding web service

 Google has a very good web service which allows anybody to use their large database of geographic
information. We can submit a geographic search string like “Ann Arbor, MI” to their geocoding API.
Then Google returns the location details of the string submitted.

 The following program asks the user to provide the name of a location to be searched for. Then, it will

call Google geocoding API and extracts the information from the returned JSON.

import urllib.request, urllib.parse, urllib.error import

json

serviceurl = 'http://maps.googleapis.com/maps/api/geocode/json?'

address = input('Enter location: ')

if len(address) < 1:

exit()

url = serviceurl + urllib.parse.urlencode({'address': address})

print('Retrieving', url)

uh = urllib.request.urlopen(url)

data = uh.read().decode()

print('Retrieved', len(data), 'characters')

try:

js = json.loads(data)

except:

js = None

if not js or 'status' not in js or js['status'] != 'OK':

print('==== Failure To Retrieve ====')

print(data)

print(json.dumps(js, indent=4))

lat = js["results"][0]["geometry"]["location"]["lat"]

lng = js["results"][0]["geometry"]["location"]["lng"]

print('lat', lat, 'lng', lng)

location = js['results'][0]['formatted_address']

print(location)

 The above program retrieves the search string and then encodes it. This encoded string along with
Google API link is treated as a URL to fetch the data from the internet.

 The data retrieved from the internet will be now passed to JSON to put it in JSON object format. If the

input string cannot be located by Google API either due to bad internet or due to unknown location,

we just display the message as ‘Failure to Retrieve’. If Google successfully identifies the location, then

we will dump that data in JSON object. Then, using indexing on JSON (as JSON will be in the form of

dictionary), we can retrieve the location address, longitude, latitude etc.

http://maps.googleapis.com/maps/api/geocode/json?%27

MODULE 5 PYTHON

Dept of CSE, CBIT 13

8. Security and API usage

 Public APIs can be used by anyone without any problem. But, if the API is set up by some
private vendor, then one must have API key to use that API. If API key is available, then it can
be included as a part of POST method or as a parameter on the URL while calling API.

 Sometimes, vendor wants more security and expects the user to provide cryptographically

signed messages using shared keys and secrets. The most common protocol used in the

internet for signing requests is OAuth.

 As the Twitter API became increasingly valuable, Twitter went from an open and public API to

an API that required the use of OAuth signatures on each API request. But, there are still a
number of convenient and free OAuth libraries so you can avoid writing an OAuth

implementation from scratch by reading the specification. These libraries are of varying

complexity and have varying degrees of richness. The OAuth web site has information about

various OAuth libraries.

MODULE 5 PYTHON

Dept of CSE, CBIT 14

Chapter 3: Using Databases and SQL

1. What is a database?

 A structured set of data stored in a permanent storage is called as database. Most of the databases are
organized like a dictionary – that is, they map keys to values. Unlike dictionaries, databases can store
huge set of data as they reside on permanent storage like hard disk of the computer.

 There are many database management softwares like Oracle, MySQL, Microsoft SQL Server,

PostgreSQL, SQLite etc. They are designed to insert and retrieve data very fast, however big the

dataset is. Database software builds indexes as data is added to the database so as to provider quicker

access to particular entry.

 In this course of study, SQLite is used because it is already built into Python. SQLite is a C library that
provides a lightweight disk-based database that doesn’t require a separate server process and allows
accessing the database using a non-standard variant of the SQL query language. SQLite is designed to
be embedded into other applications to provide database support within the application. For example,
the Firefox browser also uses the SQLite database internally. SQLite is well suited to some of the data
manipulation problems in Informatics such as the Twitter spidering application etc.

2. Database Concepts

 For the first look, database seems to be a spreadsheet consisting of multiple sheets. The primary data
structures in a database are tables, rows and columns.

 In a relational database terminology, tables, rows and columns are referred as relation, tuple and
attribute respectively.

 Typical structure of a database table is as shown below. Each table may consist of n number of
attributes and m number of tuples (or records). Every tuple gives the information about one individual.
Every cell(i, j) in the table indicates value of jth attribute for ith tuple.

Tuple1
Tuple2
…………..
………….
Tuple_m

Consider the problem of storing details of students in a database table. The format may look like –

Student1
Student2
…………..
………….
Student_m

Attribute1 Attribute2 ……………… Attribute_n
V11 V12 ……………… V1n
V21 V22 ……………… V2n
……… ……. ……………… ……….
………… ………. …………….. ………..
Vm1 Vm2 …………….. Vmn

RollNo Name DoB Marks
1 Ram 22/10/2001 82.5
2 Shyam 20/12/2000 81.3
……… ……. ……………… ……….
………… ………. …………….. ………..
………….. ………. ……………. …………

MODULE 5 PYTHON

Dept of CSE, CBIT 15

 Thus, table columns indicate the type of information to be stored, and table rows gives record
pertaining to every student. We can create one more table say addressTable consisting of attributes
like DoorNo, StreetName, Locality, City, PinCode. To relate this table with a respective student stored
in studentTable, we need to store RollNo also in addressTable.

 Thus, there is a relationship between two tables in a single database. There are softwares that can
maintain proper relationships between multiple tables in a single database and are known as
Relational Database Management Systems (RDBMS).

3. Database Browser for SQLite

 Many of the operations on SQLite database files can be easily done with the help of software called
Datab4a.se Browser for SQLite which is freely available from:

http://sqlitebrowser.org/

 Using this browser, one can easily create tables, insert data, edit data, or run simple SQL queries on the
data in the database. This database browser is similar to a text editor when working with text files.
When you want to do one or very few operations on a text file, you can just open it in a text editor and
make the changes you want.

 When you have many changes that you need to do to a text file, often you will write a simple Python
program. You will find the same pattern when working with databases. You will do simple operations in
the database manager and more complex operations will be most conveniently done in Python.

4. Creating a database table

 When we try to create a database table, we must specify the names of table columns and the type of
data to be stored in those columns. When the database software knows the type of data in each
column, it can choose the most efficient way to store and look up the data based on the type of data.
Here is the simple code to create a database file and a table named Tracks with two columns in the
database:

Ex1.

import sqlite3

conn = sqlite3.connect('music.sqlite')

cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

conn.close()

 The connect() method of sqlite3 makes a “connection” to the database stored in the file music.sqlite3

in the current directory. If the file does not exist, it will be created. Sometimes, the database is stored

on a different database server from the server on which we are running our program. But, all the
examples that we consider here will be local file in the current working directory of Python code.

http://sqlitebrowser.org/

MODULE 5 PYTHON

Dept of CSE, CBIT 16

 A cursor() is like a file handle that we can use to perform operations on the data stored in the

database. Calling cursor() is very similar conceptually to calling open() when dealing with text files.

Hence, once we get a cursor, we can execute the commands on the contents of database using

execute() method.

 In the above program, we are trying to remove the database table Tracks, if at all it existed in the
current working directory. The DROP TABLE command deletes the table along with all its columns and
rows. This procedure will help to avoid a possible error of trying to create a table with same name.
Then, we are creating a table with name Tracks which has two columns viz. title, which can take TEXT
type data and plays, which can take INTEGER type data. Once our job with the database is over, we
need to close the connection using close() method.

 In the previous example, we have just created a table, but not inserted any records into it. So, consider

below given program, which will create a table and then inserts two rows and finally delete records

based on some condition.

Ex2.

import sqlite3

conn = sqlite3.connect('music.sqlite')

cur = conn.cursor()

cur.execute('DROP TABLE IF EXISTS Tracks')

cur.execute('CREATE TABLE Tracks (title TEXT, plays INTEGER)')

cur.execute(“INSERT INTO Tracks (title, plays) VALUES

('Thunderstruck', 20)”)

cur.execute(“INSERT INTO Tracks (title, plays) VALUES (?, ?)”, ('My

Way', 15))

conn.commit()

print('Tracks:')

cur.execute('SELECT title, plays FROM Tracks')

for row in cur:

print(row)

cur.execute('DELETE FROM Tracks WHERE plays < 100')

cur.close()

In the above program, we are inserting first record with the SQL command –

Figure: A Database Cursor

MODULE 5 PYTHON

Dept of CSE, CBIT 17

“INSERT INTO Tracks (title, plays) VALUES('Thunderstruck', 20)”

 Note that, execute() requires SQL command to be in string format. But, if the value to be store in the

table is also a string (TEXT type), then there may be a conflict of string representation using quotes.

Hence, in this example, the entire SQL is mentioned within double-quotes and the value to be inserted

in single quotes. If we would like to use either single quote or double quote everywhere, then we need

to use escape-sequences like \’ or \”.

 While inserting second row in a table, SQL statement is used with a little different syntax –
“INSERT INTO Tracks (title, plays) VALUES (?, ?)”,('My Way', 15)

 Here, the question mark acts as a place-holder for particular value. This type of syntax is useful when

we would like to pass user-input values into database table.

 After inserting two rows, we must use commit() method to store the inserted records permanently on
the database table. If this method is not applied, then the insertion (or any other statement execution)

will be temporary and will affect only the current run of the program.

 Later, we use SELECT command to retrieve the data from the table and then use for-loop to display all

records. When data is retrieved from database using SELECT command, the cursor object gets those

data as a list of records. Hence, we can use for-loop on the cursor object. Finally, we have used a

DELETE command to delete all the records WHERE plays is less than 100.

Ex3. Write a program to create a Student database with a table consisting of student name and age. Read n

records from the user and insert them into database. Write queries to display all records and to display the

students whose age is 20.

import sqlite3

conn=sqlite3.connect('StudentDB.db')

c=conn.cursor()

c.execute('CREATE TABLE tblStudent(name text, age Integer)')

n=int(input(“Enter number of records:”))

for i in range(n):

nm=input("Enter Name:")

ag=int(input("Enter age:"))

c.execute("INSERT INTO tblStudent VALUES(?,?)",(nm,ag))

conn.commit()

c.execute("select * from tblStudent ")

print(c.fetchall())

c.execute("select * from tblStudent where age=20")

print(c.fetchall())

conn.close()

 In the above program we take a for-loop to get user-input for student’s name and age. These data are

inserted into the table. Observe the question mark acting as a placeholder for user-input variables.

Later we use a method fetchall() that is used to display all the records form the table in the form of a

list of tuples. Here, each tuple is one record from the table.

MODULE 5 PYTHON

Dept of CSE, CBIT 18

5. Structured Query Language Summary

 To perform operations on databases, one should use structured query language.
 SQL is a standard language for storing, manipulating and retrieving data in databases. Irrespective of

RDBMS software (like Oracle, MySQL, MS Access, SQLite etc) being used, the syntax of SQL remains the
same. The usage of SQL commands may vary from one RDBMS to the other and there may be little
syntactical difference.

 Also, when we are using some programming language like Python as a front-end to perform database
applications, the way we embed SQL commands inside the program source-code is as per the syntax of
respective programming language. Still, the underlying SQL commands remain the same. Hence, it is
essential to understand basic commands of SQL.

 A relational database is made up of tables, rows, and columns. The columns generally have a type such
as text, numeric, or date data.

 Now, let us see some of the examples to understand the usage of SQL statements –

 CREATE TABLE Tracks (title TEXT, plays INTEGER)

This command creates a table called as Tracks with the attributes title and plays where title can store

data of type TEXT and plays can store data of type INTEGER.

 INSERT INTO Tracks (title, plays) VALUES ('My Way', 15)

This command inserts one record into the table Tracks where values for the attributes title and plays

are ‘My Way’ and 15 respectively.

 SELECT * FROM Tracks

Retrieves all the records from the table Tracks

 SELECT * FROM Tracks WHERE title = 'My Way’

Retrieves the records from the table Tracks having the value of attribute title as ‘My Way’

 SELECT title, plays FROM Tracks ORDER BY title

The values of attributes title and plays are retrieved from the table Tracks with the records ordered in

ascending order of title.

 UPDATE Tracks SET plays = 16 WHERE title = 'My Way‘

Whenever we would like to modify the value of any particular attribute in the table, we can use

UPDATE command. Here, the value of attribute plays is assigned to a new value for the record having

value of title as ‘My Way’.

 DELETE FROM Tracks WHERE title = 'My Way'

A particular record can be deleted from the table using DELETE command. Here, the record with value

of attribute title as ‘My Way’ is deleted from the table Tracks.

MODULE 5 PYTHON

Dept of CSE, CBIT 19

6. Spidering Twitter using a database
 Here is the source code for Twitter spidering application:

from urllib.request import urlopen

import urllib.error

import twurl

import json

import sqlite3

TWITTER_URL = 'https://api.twitter.com/1.1/friends/list.json'

conn = sqlite3.connect('spider.sqlite')

cur = conn.cursor()

cur.execute('''

CREATE TABLE IF NOT EXISTS Twitter

(name TEXT, retrieved INTEGER, friends INTEGER)''')

while True:

acct = input('Enter a Twitter account, or quit: ')

if(acct == 'quit'): break

if(len(acct) < 1):

cur.execute('SELECT name FROM Twitter WHERE retrieved = 0

LIMIT 1')

try:

acct = cur.fetchone()[0]

except:

print(‘No unretrieved twitter accounts found ’)

continue

url = twurl.augment(TWITTER_URL, {'screen_name': acct,

'count': '5'})

print('Retrieving', url)

connection = urlopen(url)

data = connection.read().decode()

headers = dict(connection.getheaders())

print('Remaining', headers['x-rate-limit-remaining'])

js = json.loads(data)

cur.execute('UPDATE Twitter SET retrieved=1 WHERE name =

?', (acct,))

countnew = 0

countold = 0

for u in js['users']:

friend = u['screen_name']

print(friend)

cur.execute('SELECT friends FROM Twitter WHERE name = ? LIMIT 1',

(friend,))

try:

count = cur.fetchone()[0]

cur.execute('UPDATE Twitter SET friends = ? WHERE name = ?',

(count+1, friend))

countold = countold + 1

MODULE 5 PYTHON

Dept of CSE, CBIT 20

except:

cur.execute('''INSERT INTO Twitter (name, retrieved,

friends)VALUES (?, 0, 1)''', (friend,))

countnew = countnew + 1

print('New accounts=', countnew, ' revisited=', countold)

conn.commit()

cur.close()

7. Basic data modeling

 The relational database management system (RDBMS) has the power of linking multiple tables. The act
of deciding how to break up your application data into multiple tables and establishing the
relationships between the tables is called data modeling.

 The design document that shows the tables and their relationships is called a data model. Data
modeling is a relatively sophisticated skill.

 The data modeling is based on the concept of database normalization which has certain set of rules. In
a raw-sense, we can mention one of the basic rules as never put the same string data in the database
more than once.

 If we need the data more than once, we create a numeric key (primary key) for the data and reference
the actual data using this key. This is because string requires more space on the disk compared to
integer, and data retrieval (by comparing) using strings is difficult compared to that with integer.

 Consider the example of Student database discussed in previous section. We can create a table using
following SQL command –
CREA8T.E TABLE tblStudent

(RollNo INTEGER PRIMARY KEY, Name TEXT, age INTEGER, sem INTEGER,

address TEXT)

 Here, RollNo is a primary key and by default it will be unique in one table. Now, another take can be

created as –

CREATE TABLE tblMarks

(RollNo INTEGER, sem INTEGER, m1 REAL, m2 REAL, m3 REAL,

UNIQUE(RollNo,sem))

 Now, in the tblMarks consisting of marks of 3 tests of all the students, RollNo and sem are together

unique. Because, in one semester, only one student can be there having a particular RollNo. Whereas

in another semester, same RollNo may be there.

 Such types of relationships are established between various tables in RDBMS and that will help better

management of time and space.

MODULE 5 PYTHON

Dept of CSE, CBIT 21

Follows
People

8. programming with multiple tables

Figure 15.4: Relationships Between Tables

Constraints in database tables:

 As we design our table structures, we can tell the database system that we would like it to enforce a few rules on

us. These rules help us from making mistakes and introducing incorrect data into out tables. When we create our

tables:

cur.execute('''CREATE TABLE IF NOT EXISTS People(id INTEGER PRIMARY KEY, name TEXT UNIQUE, retrieved

INTEGER)''')
cur.execute('''CREATE TABLE IF NOT EXISTS Follows(from_id INTEGER, to_id INTEGER, UNIQUE(from_id, to_id))''')

- name column in the People table must be UNIQUE.
- combination of the two numbers in each row of the Follows table must be unique.
- These constraints keep us from making mistakes such as adding the same relationship

more than once.

 We can take advantage of these constraints in the following code:

cur.execute('''INSERT OR IGNORE INTO People (name, retrieved)VALUES (?, 0)''', (friend,))

 We add the OR IGNORE clause to our INSERT statement to indicate that if this particular INSERT would cause a

violation of the “name must be unique” rule, the database system is allowed to ignore the INSERT.

 Similarly, the following code ensures that we don’t add the exact same Follows relationship twice.

cur.execute('''INSERT OR IGNORE INTO Follow (from_id, to_id) VALUES (?, ?)''', (id, friend_id))

from_id to_id

1

2

1 3

1 4
 ...

id name retrieved

1

2

3

4

drchuck

opencontent

lhawthorn

steve_coppin

...

1

1

1

0

MODULE 5 PYTHON

Dept of CSE, CBIT 22

Retrieve and/or insert a record

 When we prompt the user for a Twitter account, if the account exists, we must look up its id value.
If the account does not yet exist in the People table, we must insert the record and get the id
value from the inserted row.

friend = u['screen_name']

cur.execute('SELECT id FROM People WHERE name = ? LIMIT 1',

(friend,))

try:

friend_id = cur.fetchone()[0]

countold = countold + 1

except:

cur.execute('''INSERT OR IGNORE INTO People (name,

retrieved)

VALUES (?, 0)''', (friend,))

conn.commit()

ifcur.rowcount != 1 :

print 'Error inserting account:',friend

continue

friend_id = cur.lastrowid

countnew = countnew + 1

 If we end up in the except code, it simply means that the row was not found, so we must insert the
row. We use INSERT OR IGNORE just to avoid errors and then call commit() to force the database
to really be updated.

 After the write is done, we can check the cur.rowcount to see how many rows were affected. Since
we are attempting to insert a single row, if the number of affected rows is something other than 1,
it is an error.

 If the INSERT is successful, we can look at cur.lastrowid to find out what value the database
assigned to the id column in our newly created row.

Storing the friend relationship

 Once we know the key value for both the Twitter user and the friend in the JSON, it is a simple matter
to insert the two numbers into the Follows table with the following code:

cur.execute('INSERT OR IGNORE INTO Follows (from_id, to_id) VALUES (?,

?)', (id, friend_id))

 Notice that we let the database take care of keeping us from “double-inserting” a relationship
by creating the table with a uniqueness constraint and then adding OR IGNORE to our INSERT
statement.

MODULE 5 PYTHON

Dept of CSE, CBIT 23

9. Three kinds of keys

 Sometimes, we need to build a data model by putting our data into multiple linked tables and linking
the1r0o.ws of those tables using some keys. There are three types of keys used in database model:

 A logical key is a key that the “real world” might use to look up a row. It defines the relationship
between primary keys and foreign keys. Most of the times, a UNIQUE constraint is added to a logical
key. Since the logical key is how we look up a row from the outside world, it makes little sense to allow
mu1lt1ip. le rows with the same value in the table.

 A primary key is usually a number that is assigned automatically by the database. It generally has no
meaning outside the program and is only used to link rows from different tables together. When we
want to look up a row in a table, usually searching for the row using the primary key is the fastest way
to find the row. Since primary keys are integer numbers, they take up very little storage and can be
compared or sorted very quickly.

 A foreign key is usually a number that points to the primary key of an associated row in a different

table.

 Consider a table consisting of student details like RollNo, name, age, semester and address as shown

below –

RollNo Name Age Sem Address
1 Ram 29 6 Bangalore
2 Shyam 21 8 Mysore
3 Vanita 19 4 Sirsi
4 Kriti 20 6 Tumkur

 In this table, RollNo can be considered as a primary key because it is unique for every student in that

table. Consider another table that is used for storing marks of students in all the three tests as below –

RollNo Sem M1 M2 M3
1 6 34 45 42.5
2 6 42.3 44 25
3 4 38 44 41.5
4 6 39.4 43 40
2 8 37 42 41

 To save the memory, this table can have just RollNo and marks in all the tests. There is no need to

store the information like name, age etc of the students as these information can be retrieved from

first table. Now, RollNo is treated as a foreign key in the second table.

10. Using JOIN to retrieve data

 When we follow the rules of database normalization and have data separated into multiple tables,
linked together using primary and foreign keys, we need to be able to build a SELECT that reassembles

MODULE 5 PYTHON

Dept of CSE, CBIT 24

the data across the tables. SQL uses the JOIN clause to reconnect these tables. In the JOIN clause you
specify the fields that are used to reconnect the rows between the tables.

 The following is an example of a SELECT with a JOIN clause:

SELECT * FROM Follows JOIN People

ON Follows.from_id = People.id WHERE People.id = 1

 The JOIN clause indicates that the fields we are selecting cross both the Follows and People tables. The

ON clause indicates how the two tables are to be joined: Take the rows from Follows and append the
row from People where the field from_id in Follows is the same the id value in the People table.

 The result of the JOIN is to create extra-long “metarows” which have both the fields from People
and the matching fields from Follows. Where there is more than one match between the id field
from People and the from_id from People, then JOIN creates a metarow for each of the matching
pairs of rows, duplicating data as needed.

 The following code demonstrates the data that we will have in the database after the multi-table
Twitter spider program (above) has been run several times.

import sqlite3

conn = sqlite3.connect('friends.sqlite')

cur = conn.cursor()

cur.execute('SELECT * FROM People')

count = 0

print('People:')

for row in cur:

ifcount < 5: print(row)

count = count + 1

print(count, 'rows.')

cur.execute('SELECT * FROM Follows')

count = 0

print('Follows:')

for row in cur:

ifcount < 5: print(row)

count = count + 1

print(count, 'rows.')
cur.execute('''SELECT * FROM Follows JOIN People ON Follows.to_id =

People.id WHERE Follows.from_id = 2''')

count = 0

print('Connections for id=2:')

for row in cur:

if count < 5: print(row)

count = count + 1

print(count, 'rows.')

cur.close()

MODULE 5 PYTHON

Dept of CSE, CBIT 25

DEPARTMENT: Computer Science & Engineering

MODULE 5

SEMESTER: 5th SUBJECT: Python Application Programming SUB CODE: 15CS664

Questions
1 What is a socket? Explain how socket connection can be established to the internet using Python

code over the TCP/IP connection and the http protocol to get the web document.

8

2 Explain the significance of XML over the web development. Illustrate with an example. 8

3 Write a note on Google Geocoding web service. Using Python supported libraries, demonstrate

with a Snippet code.

4 What is embedded SQL? Explain the importance of SQLite database. Write a Python code to

establish a database connection to ‘EmpDb’ and display the total gross salary paid to the

employees working in the ‘Quality Control’ department.

Assume the employee table has been already created and exist in the ‘EmpDb’. The fields of

Employee table are: (EmpID, DeptName, GrossSalary)

8

5 Explain any 2 socket functions. Explain support for parsing HTML using regular expression with

an example program.

8

6 Describe a support of security mechanism employed in Internet application with support of API

usage with an example program to get four strings and put them in “hidden.PY”.

8

7 Write a note on XML. Design python program to retrieve a node present in XML tree. 8

8 Brief on structured Query language, with suitable python program explain functions involved in

creation of database table in python.

8

9 Define socket. Write a Python program to retrieve an image over HTTP. 10

10 Write a Python program that makes a connection to a web server requesting for a document and

display what the server sends back. Your Python program should follow the rules of the HTTP

protocol. List the common headers which the web server sends to describe the document.

10

11 State the need for urllib in Python. Write Pythonic code to retrieve the file “vtu.txt” by using the

URL http://vtu.ac.in/code/vtu.txt. Also compute the frequency of each of the word in the

retrieved file.

10

12 Give an example to construct a simple web page using HTML. Write Pythonic code to match and

extract the various links found in a webpage using urllib.

10

13 Define XML. Construct a simple XML document and represent it with a diagram. Write Pythonic

code to loop through XML nodes in the document.

10

14 Define JSON. Construct a simple JSON document. Bring out the differences between XML and

JSON. Write Pythonic code to parse JSON document.

10

http://vtu.ac.in/code/vtu.txt

MODULE 5 PYTHON

Dept of CSE, CBIT 26

15 Explain why data is retrieved in blocks. Write Pythonic code to read any sized binary file using

urllib without using up all of the memory you have in your computer.

10

16 Give an example to construct a simple web page using HTML. State the need for BeautifulSoup

library in Python. Write Pythonic code to read a web page using urllib and then use BeautifulSoup

library to extract the href attributes from the anchor (a) tags.

10

	Chapter 1 : Python Basics Chapter 2 : Flow Control Chapter 3 : Functions
	PYTHON BASICS
	This is a grammatically correct English sentence. This grammatically is sentence not English correct a.
	Data type Examples
	Assignment Statements
	Variable Names
	Valid variable names Invalid variable names
	Valid variable names Invalid variable names

	Comments
	The print() Function
	The input() Function
	Printing the U
	The len() Function
	The str(), int(), and float() Functions
	TEXT AND NUMBER EQUIVALENCE

	FLOW CONTROL
	Operator Meaning
	THE DIFFERENCE BETWEEN THE == AND = OPERATORS
	Binary Boolean Operators
	Expression Evaluates to . . .
	Expression Evaluates to . . .

	The not Operator
	Expression Evaluates to . . .

	Conditions
	Blocks of Code
	if Statements
	else Statements
	elif Statements
	while Loop Statements
	An Annoying while Loop
	break Statements
	continue Statements
	TRAPPED IN AN INFINITE LOOP?
	VALUES

	for Loops and the range() Function

	An Equivalent while Loop
	The Starting, Stopping, and Stepping Arguments to range()
	from import Statements

	FUNCTIONS
	Define, Call, Pass, Argument, Parameter
	Local Variables Cannot Be Used in the Global Scope
	Local Scopes Cannot Use Variables in Other Local Scopes
	Global Variables Can Be Read from a Local Scope
	Local and Global Variables with the Same Name
	The Collatz Sequence

	LISTS
	Getting Individual Values in a List with Indexes
	Negative Indexes
	Getting a List from Another List with Slices
	Changing Values in a List with Indexes
	List Concatenation and List Replication
	Removing Values from Lists with del Statements
	Using for Loops with Lists
	The in and not in Operators
	The Multiple Assignment Trick
	Using the enumerate() Function with Lists
	Using the random.choice() and random.shuffle() Functions with Lists
	Augmented assignment statement Equivalent assignment statement

	Finding a Value in a List with the index() Method
	Adding Values to Lists with the append() and insert() Methods
	Removing Values from Lists with the remove() Method
	Sorting the Values in a List with the sort() Method
	Reversing the Values in a List with the reverse() Method
	EXCEPTIONS TO INDENTATION RULES IN PYTHON

	Mutable and Immutable Data Types
	The Tuple Data Type
	Converting Types with the list() and tuple() Functions
	Identity and the id() Function
	Passing References
	Comma Code
	Coin Flip Streaks
	Character Picture Grid

	DICTIONARIES AND STRUCTURING DATA
	Dictionaries vs. Lists
	ORDERED DICTIONARIES IN PYTHON 3.7

	The keys(), values(), and items() Methods
	Checking Whether a Key or Value Exists in a Dictionary
	The get() Method
	The setdefault() Method
	A Tic-Tac-Toe Board
	Nested Dictionaries and Lists

	MANIPULATING STRINGS
	String Literals
	Double Quotes
	Escape Characters
	Escape character Prints as

	Raw Strings
	Multiline Strings with Triple Quotes
	Multiline Comments
	Indexing and Slicing Strings
	The in and not in Operators with Strings
	The upper(), lower(), isupper(), and islower() Methods
	The isX() Methods
	The startswith() and endswith() Methods
	The join() and split() Methods
	Splitting Strings with the partition() Method
	Justifying Text with the rjust(), ljust(), and center() Methods
	Removing Whitespace with the strip(), rstrip(), and lstrip() Methods
	RUNNING PYTHON SCRIPTS OUTSIDE OF MU

	Step 1: Program Design and Data Structures
	THE CHAPTER PROJECTS

	Step 2: Handle Command Line Arguments
	Step 3: Copy the Right Phrase
	Step 1: Copy and Paste from the Clipboard
	Step 2: Separate the Lines of Text and Add the Star
	Step 3: Join the Modified Lines
	Table Printer
	Zombie Dice Bots

	PATTERN MATCHING WITH REGULAR EXPRESSIONS
	Creating Regex Objects
	Matching Regex Objects
	Review of Regular Expression Matching
	Grouping with Parentheses
	Matching Multiple Groups with the Pipe
	Optional Matching with the Question Mark
	Matching Zero or More with the Star
	Matching One or More with the Plus
	Matching Specific Repetitions with Braces
	Shorthand character class Represents
	Shorthand character class Represents

	Matching Everything with Dot-Star
	Matching Newlines with the Dot Character
	Step 1: Create a Regex for Phone Numbers
	Step 2: Create a Regex for Email Addresses
	Step 3: Find All Matches in the Clipboard Text
	Step 4: Join the Matches into a String for the Clipboard
	Running the Program
	Ideas for Similar Programs
	Date Detection
	Strong Password Detection
	Regex Version of the strip() Method

	READING AND WRITING FILES
	Backslash on Windows and Forward Slash on macOS and Linux
	Using the / Operator to Join Paths
	The Current Working Directory
	The Home Directory
	Absolute vs. Relative Paths
	Creating New Folders Using the os.makedirs() Function
	Handling Absolute and Relative Paths
	Getting the Parts of a File Path
	Finding File Sizes and Folder Contents
	Modifying a List of Files Using Glob Patterns
	Checking Path Validity
	Opening Files with the open() Function
	Reading the Contents of Files
	Writing to Files
	Step 1: Store the Quiz Data in a Dictionary
	Step 2: Create the Quiz File and Shuffle the Question Order
	Step 3: Create the Answer Options
	Step 4: Write Content to the Quiz and Answer Key Files
	Step 1: Comments and Shelf Setup
	Step 2: Save Clipboard Content with a Keyword
	Extending the Multi-Clipboard
	Mad Libs

	ORGANIZING FILES
	Copying Files and Folders
	Moving and Renaming Files and Folders
	Permanently Deleting Files and Folders
	Safe Deletes with the send2trash Module
	Reading ZIP Files
	Extracting from ZIP Files
	Creating and Adding to ZIP Files
	Step 1: Create a Regex for American-Style Dates
	Step 2: Identify the Date Parts from the Filenames
	Step 3: Form the New Filename and Rename the Files
	Ideas for Similar Programs
	Step 2: Create the New ZIP File
	Step 3: Walk the Directory Tree and Add to the ZIP File
	Ideas for Similar Programs
	Selective Copy
	Deleting Unneeded Files
	Filling in the Gaps

	DEBUGGING
	Using an Assertion in a Traffic Light Simulation
	Using the logging Module
	Logging Levels
	Disabling Logging
	Logging to a File
	Continue
	Step In
	Step Over
	Step Out
	Stop
	Debugging a Number Adding Program
	Breakpoints
	Debugging Coin Toss

	1. Programmer-defined types
	2. Attributes
	3. Rectangles
	4. Instances as return values
	5. Objects are mutable
	6. Copying
	CHAPTER 02 CLASSES AND FUNCTIONS
	2. Pure functions
	3. Modifiers
	4. Prototyping versus planning

	CHAPTER 03 CLASSES AND METHODS
	2. Printing Objects
	3. Another Example
	4. A More Complicated Example
	5. The init Method
	6. The _str_ Method
	7. Operator Overloading
	8. Type-Based Dispatch
	9. Polymorphism
	1. HyperText Transport Protocol - HTTP
	2. The World’s Simplest Web Browser
	3. Retrieving an image over HTTP
	4. Retrieving web pages with urllib
	5. Parsing HTML and scraping the web
	6. Parsing HTML using regular expressions
	7. Parsing HTML using BeautifulSoup
	8. Reading binary files using urllib
	Chapter 2: Using Web Services
	1. eXtensible Markup Language- XML
	2. Parsing XML
	3. Looping through nodes
	4. JavaScript Object Notation-JSON
	5. Parsing JSON
	6. Application Programming Interfaces
	7. Google geocoding web service
	8. Security and API usage
	Chapter 3: Using Databases and SQL
	2. Database Concepts
	3. Database Browser for SQLite
	4. Creating a database table
	Ex1.
	Ex2.

	5. Structured Query Language Summary
	6. Spidering Twitter using a database
	except:
	except: (1)

	7. Basic data modeling
	UNIQUE(RollNo,sem))

	8. programming with multiple tables
	except:
	continue
	Storing the friend relationship

	9. Three kinds of keys
	10. Using JOIN to retrieve data

